2
Co się stanie, jeśli poprawimy twierdzenia dotyczące hierarchii czasu?
f,gf,gf,gf(n)logf(n)=o(g(n))f(n)logf(n)=o(g(n))f(n) \log f(n) = o(g(n))f , g f ( n + 1 ) = o ( g ( n ) )DTIME(f(n))⊊DTIME(g(n))DTIME(f(n))⊊DTIME(g(n)) DTIME(f(n)) \subsetneq DTIME(g(n))f,gf,gf,gf(n+1)=o(g(n))f(n+1)=o(g(n))f(n+1)=o(g(n))jest to NTIME(f(n))⊊NTIME(g(n)).NTIME(f(n))⊊NTIME(g(n)). NTIME(f(n)) \subsetneq NTIME(g(n)). Istnieje wiele (starych i aktualnych) wyników, które wykorzystują twierdzenia o hierarchii czasu do udowodnienia dolnych granic. Oto moje pytania: Co się …