Algorytmy uczenia maszynowego budują model danych szkoleniowych. Termin „uczenie maszynowe” jest niejasno zdefiniowany; obejmuje to tak zwane uczenie statystyczne, uczenie wzmacniające, uczenie bez nadzoru itp. ZAWSZE DODAJ SZCZEGÓŁOWĄ TAGĘ.
Zastanawiam się, jak obliczyć dokładność i przywołać miary dla wieloklasowej klasyfikacji wielopłaszczyznowej, tj. Klasyfikacji, w której występują więcej niż dwie etykiety i gdzie każde wystąpienie może mieć wiele etykiet?
Widziałem gdzieś, że klasyczne odległości (takie jak odległość euklidesowa) stają się słabo dyskryminujące, gdy mamy wielowymiarowe i rzadkie dane. Dlaczego? Czy masz przykład dwóch rzadkich wektorów danych, w których odległość euklidesowa nie działa dobrze? W takim przypadku, jakiego podobieństwa powinniśmy użyć?
Na kursie uczenia maszynowego Andrew Nga wprowadza regresję liniową i regresję logistyczną oraz pokazuje, jak dopasować parametry modelu za pomocą spadku gradientu i metody Newtona. Wiem, że zejście gradientowe może być przydatne w niektórych aplikacjach uczenia maszynowego (np. Propagacja wsteczna), ale w bardziej ogólnym przypadku jest jakiś powód, dla którego …
Wydaje się, że eksploracja danych i uczenie maszynowe stały się tak popularne, że teraz prawie każdy student CS wie o klasyfikatorach, klastrowaniu, statystycznym NLP ... itd. Wygląda więc na to, że znalezienie eksploratorów danych nie jest obecnie trudną sprawą. Moje pytanie brzmi: jakie umiejętności mógłby nauczyć się eksplorator danych, co …
Jaka jest odpowiednia strategia podziału zestawu danych? Pytam o opinie na następujące podejście (nie na poszczególnych parametrów, takich jak test_sizeczy n_iter, ale jeśli kiedyś X, y, X_train, y_train, X_test, a y_testwłaściwie i czy sekwencja ma sens): (rozszerzenie tego przykładu z dokumentacji scikit-learn) 1. Załaduj zestaw danych from sklearn.datasets import load_digits …
tło Pracuję w Network Operations Center, monitorujemy systemy komputerowe i ich wydajność. Jednym z kluczowych wskaźników do monitorowania jest liczba odwiedzających \ klientów aktualnie podłączonych do naszych serwerów. Aby to pokazać, zbieramy takie dane, jak dane szeregów czasowych i rysujemy wykresy. Grafit pozwala nam to zrobić, ma dość bogaty interfejs …
Mam dane niezrównoważone w klasie i chcę dostroić hiperparametry wzmocnionego warkocza za pomocą xgboost. pytania Czy istnieje odpowiednik gridsearchcv lub randomsearchcv dla xgboost? Jeśli nie, jakie jest zalecane podejście do dostrojenia parametrów xgboost?
To pytanie zostało zadane w CV kilka lat temu, wydaje się, że warto je przesłać w świetle 1) lepszej technologii obliczeniowej rzędu wielkości (np. Obliczenia równoległe, HPC itp.) I 2) nowszych technik, np. [3]. Po pierwsze, jakiś kontekst. Załóżmy, że celem nie jest testowanie hipotez, nie szacowanie efektów, ale przewidywanie …
Nawracające sieci neuronowe różnią się od „zwykłych” siecią tym, że mają warstwę „pamięci”. Z powodu tej warstwy rekurencyjne NN powinny być przydatne w modelowaniu szeregów czasowych. Nie jestem jednak pewien, czy dobrze rozumiem, jak ich używać. Powiedzmy, że mam następujące szeregi czasowe (od lewej do prawej): [0, 1, 2, 3, …
Czytałem o jądrze PCA ( 1 , 2 , 3 ) z jądrem Gaussa i wielomianem. W jaki sposób jądro Gaussa wyjątkowo dobrze oddziela pozornie jakiekolwiek dane nieliniowe? Proszę podać intuicyjną analizę, a także matematycznie, jeśli to możliwe. Jaka jest właściwość jądra Gaussa (z idealnym σσ\sigma ), czego inne jądra …
Odnoszę wrażenie, że gdy ludzie odnoszą się do sieci „głębokiego przekonania”, że jest to w zasadzie sieć neuronowa, ale bardzo duża. Czy jest to poprawne, czy też sieć głębokich przekonań sugeruje również, że sam algorytm jest inny (tj. Nie ma sieci neuronowej ze sprzężeniem zwrotnym, ale może coś z pętlami …
Co decyduje o wyborze funkcji (Softmax vs Sigmoid) w klasyfikatorze logistycznym? Załóżmy, że istnieją 4 klasy wyjściowe. Każda z powyższych funkcji podaje prawdopodobieństwo, że każda klasa będzie poprawnym wyjściem. Który wziąć do klasyfikatora?
Gdy próbujesz dopasować modele do dużego zestawu danych, powszechną wskazówką jest podzielenie danych na trzy części: szkolenie, sprawdzanie poprawności i testowanie zestawu danych. Wynika to z faktu, że modele zwykle mają trzy „poziomy” parametrów: pierwszy „parametr” to klasa modelu (np. SVM, sieć neuronowa, losowy las), drugi zestaw parametrów to parametry …
Widzę, że wiele algorytmów uczenia maszynowego działa lepiej przy średnim anulowaniu i wyrównaniu kowariancji. Na przykład sieci neuronowe mają tendencję do szybszego konwergencji, a K-Means zazwyczaj zapewnia lepszą klastrowanie z wstępnie przetworzonymi funkcjami. Nie widzę intuicji za tymi krokami wstępnego przetwarzania, które prowadzą do poprawy wydajności. Czy ktoś może mi …
Załóżmy, że mamy kogoś, kto buduje model predykcyjny, ale ten ktoś niekoniecznie jest dobrze obeznany z właściwymi zasadami statystyki lub uczenia maszynowego. Może pomagamy tej osobie w trakcie nauki, a może ta osoba korzysta z pakietu oprogramowania, który wymaga minimalnej wiedzy. Teraz ta osoba może bardzo dobrze rozpoznać, że prawdziwy …
Używamy plików cookie i innych technologii śledzenia w celu poprawy komfortu przeglądania naszej witryny, aby wyświetlać spersonalizowane treści i ukierunkowane reklamy, analizować ruch w naszej witrynie, i zrozumieć, skąd pochodzą nasi goście.
Kontynuując, wyrażasz zgodę na korzystanie z plików cookie i innych technologii śledzenia oraz potwierdzasz, że masz co najmniej 16 lat lub zgodę rodzica lub opiekuna.