Analiza głównego składnika „wstecz”: ile wariancji danych wyjaśnia dana liniowa kombinacja zmiennych?


17

I przeprowadzeniu analizy głównych składowych sześć zmiennych , , , , E i F . Jeśli dobrze rozumiem, niezabezpieczone PC1 mówi mi, jaka liniowa kombinacja tych zmiennych opisuje / wyjaśnia największą wariancję danych, a PC2 mówi mi, jaka liniowa kombinacja tych zmiennych opisuje następną największą wariancję danych i tak dalej. AA BB C CD.DEF

Jestem tylko ciekawy - czy jest jakiś sposób, aby zrobić to „wstecz”? Powiedzmy, że wybrałem jakąś liniową kombinację tych zmiennych - np. A + 2 B + 5 CA+2B+5C , czy mogę obliczyć, ile wariancji w danych to opisuje?


7
Ściśle mówiąc, PC2 jest kombinacją liniową prostopadłą do PC1, która opisuje następną największą wariancję danych.
Henry

1
Czy próbujesz oszacować V a r ( A + 2 B + 5 C )Var(A+2B+5C) ?
vqv

Wszystkie fajne odpowiedzi (trzy + 1). Jestem ciekawy opinii ludzi na temat tego, czy sformułowany problem można rozwiązać za pomocą metod ukrytej zmiennej (SEM / LVM), jeśli weźmiemy pod uwagę jedną lub więcej ukrytych zmiennych jako „liniową kombinację zmiennych”.
Aleksandr Blekh

1
@Aleksandr, moja odpowiedź jest w rzeczywistości sprzeczna z pozostałymi dwoma. Zredagowałem swoją odpowiedź, aby wyjaśnić spór (i planuję ją edytować dalej, aby przeliterować matematykę). Wyobraźmy sobie zbiór danych z dwóch identycznych standaryzowanych zmiennych X = YX=Y . Ile wariancji opisuje XX ? Dwa inne rozwiązania dają 50 %50% . Twierdzę, że poprawna odpowiedź to 100 %100% .
ameba mówi Przywróć Monikę

1
@amoeba: Pomimo tego, że wciąż staram się całkowicie zrozumieć materiał, rozumiem, że twoja odpowiedź jest inna. Kiedy powiedziałem „wszystkie ładne odpowiedzi”, zasugerowałem, że podoba mi się poziom odpowiedzi per se, a nie ich poprawność . Uważam, że ma to wartość edukacyjną dla ludzi takich jak ja, którzy poszukują samokształcenia w trudnym terenie, o nazwie Statystyka :-). Mam nadzieję, że to ma sens.
Aleksandr Blekh

Odpowiedzi:


11

Jeśli zaczniemy od założenia, że ​​wszystkie zmienne zostały wyśrodkowane (standardowa praktyka w PCA), to całkowita wariancja danych jest tylko sumą kwadratów:

T = i ( A 2 i + B 2 i + C 2 i + D 2 i + E 2 i + F 2 i )

T=i(A2i+B2i+C2i+D2i+E2i+F2i)

Jest to równe śladowi macierzy kowariancji zmiennych, która jest równa sumie wartości własnych macierzy kowariancji. Jest to ta sama ilość, o której mówi PCA w kategoriach „wyjaśniania danych” - tzn. Chcesz, aby twoje komputery PC wyjaśniały największą część diagonalnych elementów macierzy kowariancji. Teraz, jeśli uczynimy to funkcją obiektywną dla zestawu przewidywanych wartości, takich jak:

S = Σ I ( [ I - I ] 2 + + [ C i - K I ] 2 )

S=i([AiA^i]2++[FiF^i]2)

Wtedy pierwsze główne składowe minimalizuje SS spośród wszystkich Pozycja 1 wartości dopasowanych ( I , ... , F I )(A^i,,F^i) . Wydaje się więc, że odpowiednią ilością, której szukasz, jest P = 1 - ST

P=1ST
Aby użyć twojego przykładuA+2B+5CA+2B+5C, musimy przekształcić to równanie w przewidywania rangi 1. Najpierw musisz znormalizować wagi, aby uzyskać sumę kwadratów 1. Zastępujemy(1,2,5,0,0,0)(1,2,5,0,0,0)(suma kwadratów3030) wartością(130 ,230 ,530 ,0,0,0)(130,230,530,0,0,0). Następnie „oceniamy” każdą obserwację według znormalizowanych wag:

Z i = 130 Ai+230 Bi+530 Ci

Zi=130Ai+230Bi+530Ci

Następnie mnożymy wyniki przez wektor wagi, aby uzyskać naszą prognozę rangi 1.

( I B i C i D i E i F i ) = Z i x ( 130 230 530 000)

A^iB^iC^iD^iE^iF^i=Zi×130230530000

Następnie podłącz tych oszacowań S oblicz P . Możesz również umieścić to w notacji norm macierzowych, co może sugerować inne uogólnienie. Jeśli ustawimy O jako macierz N × q obserwowanych wartości zmiennych ( q = 6 w twoim przypadku), a E jako odpowiednią macierz prognoz. Możemy zdefiniować odsetek wariancji wyjaśniony jako:SPON×qq=6E

| | O | | 2 2 - | | O - E | | 2 2| | O | | 2 2

||O||22||OE||22||O||22

Gdzie | | . | | 2 jest normą macierzy Frobeniusa . Możesz więc „uogólnić” to na inny rodzaj normy macierzowej, a otrzymasz różnicę miary „wyjaśnionej zmienności”, chociaż sama nie będzie to „wariancją”, chyba że jest to suma kwadratów.||.||2


Jest to rozsądne podejście, ale twój wyrażenie można znacznie uprościć i okazuje się być równa sumie kwadratów Z i podzielona przez całkowitą sumę kwadratów T . Myślę też, że nie jest to najlepszy sposób interpretacji pytania; zobacz moją odpowiedź na alternatywne podejście, które moim zdaniem ma większy sens (w szczególności zobacz moją przykładową ilustrację). ZiT
ameba mówi Przywróć Monikę

Think about it like that. Imagine a dataset with two standardized identical variables X=YX=Y. How much variance is described by XX? Your calculation gives 50%50%. I argue that the correct answer is 100%100%.
amoeba says Reinstate Monica

@amoeba - if X=YX=Y then the first PC is (12,12)(12,12) - this makes rank 11 scores of zi=xi+yi2=xi2zi=xi+yi2=xi2 (assuming xi=yixi=yi). This gives rank 11 predictions of ˆxi=xix^i=xi, and similarly ˆyi=yiy^i=yi. Hence you get OE=0OE=0 and S=0S=0. Hence you get 100% as your intuition suggests.
probabilityislogic

Hey, yes, sure, the 1st PC explains 100% variance, but that's not what I meant. What I meant is that X=YX=Y, but the question is how much variance is described by XX, i.e. by (1,0)(1,0) vector? What does your formula say then?
amoeba says Reinstate Monica

@amoeba - this says 50%, but note that the (1,0)(1,0) vector says that the best rank 11 predictor for (xi,yi)(xi,yi) is given as ˆxi=xix^i=xi and ˆyi=0y^i=0 (noting that zi=xizi=xi under your choice of vector). This is not an optimal prediction, which is why you don't get 100%. You need to predict both XX and YY in this set-up.
probabilityislogic

8

Let's say I choose some linear combination of these variables -- e.g. A+2B+5CA+2B+5C, could I work out how much variance in the data this describes?

This question can be understood in two different ways, leading to two different answers.

A linear combination corresponds to a vector, which in your example is [1,2,5,0,0,0][1,2,5,0,0,0]. This vector, in turn, defines an axis in the 6D space of the original variables. What you are asking is, how much variance does projection on this axis "describe"? The answer is given via the notion of "reconstruction" of original data from this projection, and measuring the reconstruction error (see Wikipedia on Fraction of variance unexplained). Turns out, this reconstruction can be reasonably done in two different ways, yielding two different answers.


Approach #1

Let XX be the centered dataset (nn rows correspond to samples, dd columns correspond to variables), let ΣΣ be its covariance matrix, and let ww be a unit vector from RdRd. The total variance of the dataset is the sum of all dd variances, i.e. the trace of the covariance matrix: T=tr(Σ)T=tr(Σ). The question is: what proportion of TT does ww describe? The two answers given by @todddeluca and @probabilityislogic are both equivalent to the following: compute projection XwXw, compute its variance and divide by TT: R2first=Var(Xw)T=wΣwtr(Σ).

R2first=Var(Xw)T=wΣwtr(Σ).

This might not be immediately obvious, because e.g. @probabilityislogic suggests to consider the reconstruction XwwXww and then to compute X2XXww2X2,

X2XXww2X2,
but with a little algebra this can be shown to be an equivalent expression.

Approach #2

Okay. Now consider a following example: XX is a d=2d=2 dataset with covariance matrix Σ=(10.990.991)

Σ=(10.990.991)
and w=(10)w=(10) is simply an xx vector:

variance explained

The total variance is T=2T=2. The variance of the projection onto ww (shown in red dots) is equal to 11. So according to the above logic, the explained variance is equal to 1/21/2. And in some sense it is: red dots ("reconstruction") are far away from the corresponding blue dots, so a lot of the variance is "lost".

On the other hand, the two variables have 0.990.99 correlation and so are almost identical; saying that one of them describes only 50%50% of the total variance is weird, because each of them contains "almost all the information" about the second one. We can formalize it as follows: given projection XwXw, find a best possible reconstruction XwvXwv with vv not necessarily the same as ww, and then compute the reconstruction error and plug it into the expression for the proportion of explained variance: R2second=X2XXwv2X2,

R2second=X2XXwv2X2,
where vv is chosen such that XXwv2XXwv2 is minimal (i.e. R2R2 is maximal). This is exactly equivalent to computing R2R2 of multivariate regression predicting original dataset XX from the 11-dimensional projection XwXw.

It is a matter of straightforward algebra to use regression solution for vv to find that the whole expression simplifies to R2second=Σw2wΣwtr(Σ).

R2second=Σw2wΣwtr(Σ).
In the example above this is equal to 0.99010.9901, which seems reasonable.

Note that if (and only if) ww is one of the eigenvectors of ΣΣ, i.e. one of the principal axes, with eigenvalue λλ (so that Σw=λwΣw=λw), then both approaches to compute R2R2 coincide and reduce to the familiar PCA expression R2PCA=R2first=R2second=λ/tr(Σ)=λ/λi.

R2PCA=R2first=R2second=λ/tr(Σ)=λ/λi.

PS. See my answer here for an application of the derived formula to the special case of ww being one of the basis vectors: Variance of the data explained by a single variable.


Appendix. Derivation of the formula for R2secondR2second

Finding vv minimizing the reconstruction XXwv2XXwv2 is a regression problem (with XwXw as univariate predictor and XX as multivariate response). Its solution is given by v=((Xw)(Xw))1(Xw)X=(wΣw)1wΣ.

v=((Xw)(Xw))1(Xw)X=(wΣw)1wΣ.

Next, the R2R2 formula can be simplified as R2=X2XXwv2X2=Xwv2X2

R2=X2XXwv2X2=Xwv2X2
due to the Pythagoras theorem, because the hat matrix in regression is an orthogonal projection (but it is also easy to show directly).

Plugging now the equation for vv, we obtain for the numerator: Xwv2=tr(Xwv(Xwv))=tr(XwwΣΣwwX)/(wΣw)2=tr(wΣΣw)/(wΣw)=Σw2/(wΣw).

Xwv2=tr(Xwv(Xwv))=tr(XwwΣΣwwX)/(wΣw)2=tr(wΣΣw)/(wΣw)=Σw2/(wΣw).

The denominator is equal to X2=tr(Σ)X2=tr(Σ) resulting in the formula given above.


I think this is an answer to a different question. For example, it not the case that that optimising your R2R2 wrt ww will give the first PC as the unique answer (in those cases where it is unique). The fact that (1,0)(1,0) and 12(1,1)12(1,1) both give 100% when X=YX=Y is evidence enough. Your proposed method seems to assume that the "normalised" objective function for PCA will always understate the variance explained (yours isn't a normalised PCA objective function as it normalises by the quantity being optimised in PCA).
probabilityislogic

I agree that our answers are to different questions, but it's not clear to me which one OP had in mind. Also, note that my interpretation is not something very weird: it's a standard regression approach: when we say that x explains so and so much variance in y, we compute reconstruction error of yxb with an optimal b, not just yx. Here is another argument: if all n variables are standardized, then in your approach each one explains 1/n amount of variance. This is not very informative: some variables can be much more predictive than others! My approach reflects that.
amoeba says Reinstate Monica

@amoeba (+1) Great answer, it's really helpful! Would you know any reference that tackles this issue? Thanks!
PierreE

@PierreE Thanks. No, I don't think I have any reference for that.
amoeba says Reinstate Monica

4

Let the total variance, T, in a data set of vectors be the sum of squared errors (SSE) between the vectors in the data set and the mean vector of the data set, T=i(xiˉx)(xiˉx)

where ˉx is the mean vector of the data set, xi is the ith vector in the data set, and is the dot product of two vectors. Said another way, the total variance is the SSE between each xi and its predicted value, f(xi), when we set f(xi)=ˉx.

Now let the predictor of xi, f(xi), be the projection of vector xi onto a unit vector c.

fc(xi)=(cxi)c

Then the SSE for a given c is SSEc=i(xifc(xi))(xifc(xi))

I think that if you choose c to minimize SSEc, then c is the first principal component.

If instead you choose c to be the normalized version of the vector (1,2,5,...), then TSSEc is the variance in the data described by using c as a predictor.


This is a reasonable approach, but I think this is not the best way to interpret the question; see my answer for an alternative approach that I argue makes more sense (in particular, see my example figure there).
amoeba says Reinstate Monica

Think about it like that. Imagine a dataset with two standardized identical variables X=Y. How much variance is described by X? Your calculation gives 50%. I argue that the correct answer is 100%.
amoeba says Reinstate Monica
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.