kluczowe rzeczy, które należy wiedzieć o operacjach na tablicach NumPy w porównaniu z operacjami na macierzach NumPy to:
Macierz NumPy jest podklasą tablicy NumPy
NumPy tablicy operacje są elementem mądry (raz transmisja jest wykazywana)
Operacje na macierzach NumPy podlegają zwykłym regułom algebry liniowej
kilka fragmentów kodu do zilustrowania:
>>> from numpy import linalg as LA
>>> import numpy as NP
>>> a1 = NP.matrix("4 3 5; 6 7 8; 1 3 13; 7 21 9")
>>> a1
matrix([[ 4, 3, 5],
[ 6, 7, 8],
[ 1, 3, 13],
[ 7, 21, 9]])
>>> a2 = NP.matrix("7 8 15; 5 3 11; 7 4 9; 6 15 4")
>>> a2
matrix([[ 7, 8, 15],
[ 5, 3, 11],
[ 7, 4, 9],
[ 6, 15, 4]])
>>> a1.shape
(4, 3)
>>> a2.shape
(4, 3)
>>> a2t = a2.T
>>> a2t.shape
(3, 4)
>>> a1 * a2t
matrix([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
ale ta operacja kończy się niepowodzeniem, jeśli te dwie macierze NumPy zostaną przekonwertowane na tablice:
>>> a1 = NP.array(a1)
>>> a2t = NP.array(a2t)
>>> a1 * a2t
Traceback (most recent call last):
File "<pyshell#277>", line 1, in <module>
a1 * a2t
ValueError: operands could not be broadcast together with shapes (4,3) (3,4)
chociaż użycie składni NP.dot działa z tablicami ; te operacje działają jak mnożenie macierzy:
>> NP.dot(a1, a2t)
array([[127, 84, 85, 89],
[218, 139, 142, 173],
[226, 157, 136, 103],
[352, 197, 214, 393]])
więc czy kiedykolwiek potrzebujesz macierzy NumPy? tj. czy tablica NumPy wystarczy do obliczenia algebry liniowej (pod warunkiem, że znasz poprawną składnię, np. NP.dot)?
zasada wydaje się być taka, że jeśli argumenty (tablice) mają kształty (mxn) zgodne z daną operacją algebry liniowej, to wszystko jest w porządku, w przeciwnym razie rzuca NumPy.
jedynym wyjątkiem, na jaki się natknąłem (prawdopodobnie są inne), jest odwrotne obliczanie macierzy .
poniżej znajdują się fragmenty, w których nazwałem operację czystej algebry liniowej (w rzeczywistości z modułu Linear Algebra Numpy'ego) i przekazane w tablicy NumPy
wyznacznik tablicy:
>>> m = NP.random.randint(0, 10, 16).reshape(4, 4)
>>> m
array([[6, 2, 5, 2],
[8, 5, 1, 6],
[5, 9, 7, 5],
[0, 5, 6, 7]])
>>> type(m)
<type 'numpy.ndarray'>
>>> md = LA.det(m)
>>> md
1772.9999999999995
wektory własne / pary wartości własnych :
>>> LA.eig(m)
(array([ 19.703+0.j , 0.097+4.198j, 0.097-4.198j, 5.103+0.j ]),
array([[-0.374+0.j , -0.091+0.278j, -0.091-0.278j, -0.574+0.j ],
[-0.446+0.j , 0.671+0.j , 0.671+0.j , -0.084+0.j ],
[-0.654+0.j , -0.239-0.476j, -0.239+0.476j, -0.181+0.j ],
[-0.484+0.j , -0.387+0.178j, -0.387-0.178j, 0.794+0.j ]]))
norma macierzy :
>>>> LA.norm(m)
22.0227
rozkład na czynniki qr :
>>> LA.qr(a1)
(array([[ 0.5, 0.5, 0.5],
[ 0.5, 0.5, -0.5],
[ 0.5, -0.5, 0.5],
[ 0.5, -0.5, -0.5]]),
array([[ 6., 6., 6.],
[ 0., 0., 0.],
[ 0., 0., 0.]]))
ranga matrycy :
>>> m = NP.random.rand(40).reshape(8, 5)
>>> m
array([[ 0.545, 0.459, 0.601, 0.34 , 0.778],
[ 0.799, 0.047, 0.699, 0.907, 0.381],
[ 0.004, 0.136, 0.819, 0.647, 0.892],
[ 0.062, 0.389, 0.183, 0.289, 0.809],
[ 0.539, 0.213, 0.805, 0.61 , 0.677],
[ 0.269, 0.071, 0.377, 0.25 , 0.692],
[ 0.274, 0.206, 0.655, 0.062, 0.229],
[ 0.397, 0.115, 0.083, 0.19 , 0.701]])
>>> LA.matrix_rank(m)
5
stan matrycy :
>>> a1 = NP.random.randint(1, 10, 12).reshape(4, 3)
>>> LA.cond(a1)
5.7093446189400954
inwersja wymaga jednak macierzy NumPy:
>>> a1 = NP.matrix(a1)
>>> type(a1)
<class 'numpy.matrixlib.defmatrix.matrix'>
>>> a1.I
matrix([[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028],
[ 0.028, 0.028, 0.028, 0.028]])
>>> a1 = NP.array(a1)
>>> a1.I
Traceback (most recent call last):
File "<pyshell#230>", line 1, in <module>
a1.I
AttributeError: 'numpy.ndarray' object has no attribute 'I'
ale pseudoinverse Moore'a-Penrose'a wydaje się działać dobrze
>>> LA.pinv(m)
matrix([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])
>>> m = NP.array(m)
>>> LA.pinv(m)
array([[ 0.314, 0.407, -1.008, -0.553, 0.131, 0.373, 0.217, 0.785],
[ 1.393, 0.084, -0.605, 1.777, -0.054, -1.658, 0.069, -1.203],
[-0.042, -0.355, 0.494, -0.729, 0.292, 0.252, 1.079, -0.432],
[-0.18 , 1.068, 0.396, 0.895, -0.003, -0.896, -1.115, -0.666],
[-0.224, -0.479, 0.303, -0.079, -0.066, 0.872, -0.175, 0.901]])