Istnieje trzecia opcja - użycie stream().toArray()
- zobacz komentarze poniżej, dlaczego stream nie ma metody toList . Okazuje się, że jest wolniejszy niż forEach () lub collect () i mniej wyrazisty. Może być zoptymalizowany w późniejszych wersjach JDK, więc dodaj go tutaj na wszelki wypadek.
zarozumiały List<String>
myFinalList = Arrays.asList(
myListToParse.stream()
.filter(Objects::nonNull)
.map(this::doSomething)
.toArray(String[]::new)
);
z testem mikro-mikro, wpisami 1M, zerami 20% i prostą transformacją w doSomething ()
private LongSummaryStatistics benchmark(final String testName, final Runnable methodToTest, int samples) {
long[] timing = new long[samples];
for (int i = 0; i < samples; i++) {
long start = System.currentTimeMillis();
methodToTest.run();
timing[i] = System.currentTimeMillis() - start;
}
final LongSummaryStatistics stats = Arrays.stream(timing).summaryStatistics();
System.out.println(testName + ": " + stats);
return stats;
}
wyniki są
równolegle:
toArray: LongSummaryStatistics{count=10, sum=3721, min=321, average=372,100000, max=535}
forEach: LongSummaryStatistics{count=10, sum=3502, min=249, average=350,200000, max=389}
collect: LongSummaryStatistics{count=10, sum=3325, min=265, average=332,500000, max=368}
sekwencyjny:
toArray: LongSummaryStatistics{count=10, sum=5493, min=517, average=549,300000, max=569}
forEach: LongSummaryStatistics{count=10, sum=5316, min=427, average=531,600000, max=571}
collect: LongSummaryStatistics{count=10, sum=5380, min=444, average=538,000000, max=557}
równolegle bez zer i filtru (więc strumień jest SIZED
): toArrays ma najlepszą wydajność w takim przypadku i .forEach()
kończy się niepowodzeniem z „indexOutOfBounds” na odbiorniku ArrayList, musiał zastąpić przez.forEachOrdered()
toArray: LongSummaryStatistics{count=100, sum=75566, min=707, average=755,660000, max=1107}
forEach: LongSummaryStatistics{count=100, sum=115802, min=992, average=1158,020000, max=1254}
collect: LongSummaryStatistics{count=100, sum=88415, min=732, average=884,150000, max=1014}