To niesamowite, że Kepler określił swoje trzy prawa, patrząc na dane, bez kalkulatora i używając tylko długopisu i papieru. Można sobie wyobrazić, w jaki sposób udowodnił, że jego prawa opisują dane po ich domniemaniu, ale nie rozumiem, jak je odgadł.
W szczególności skupię się na trzecim prawie Keplera, które stwierdza, że kwadrat okresu orbity planety jest proporcjonalny do sześcianu pół-dużej osi orbity.
Zakładam, że Kepler pracował tylko z danymi o planetach, a także o własnym księżycu i słońcu. Przyjmuję to założenie, ponieważ nie sądzę, aby Kepler miał dane o innych księżycach, kometach lub asteroidach, których nie zaobserwował jeszcze teleskop. Jeśli to prawda, wiedząc, że Neptun, Uran i Pluton nie zostały jeszcze odkryte, gdy Kepler żył, oznacza to, że Kepler miał mniej niż 9 punktów danych do pracy.
Mój przyjaciel twierdzi, że całkowicie zrozumiałe jest, w jaki sposób Kepler odgadł tę relację (chociaż nie podaje żadnej metody, jak Kepler mógł to zrobić), a także, że obserwacje Keplera „nie są takie trudne”. Jako wyzwanie podałem znajomemu tabelę danych z jedną kolumną oznaczoną , drugą yi 9 współrzędnymi ( x , y ), które pasują do relacji x 4 = y 3 . I powiedział: „proszę znaleźć zależność między X i Y ”, i jak można się spodziewać, nie udało mu się to zrobić.
Wyjaśnij mi, jak na świecie Kepler odgadł tę relację przy tak małej liczbie punktów danych. I jeśli moje założenie, że liczba punktów danych, które Kepler miał do dyspozycji, jest niewielkie, jest błędne, to nadal uważam, że dość trudno odgadnąć ten związek bez kalkulatora.