Pytania otagowane jako generative-adversarial-networks

9
Czy sztuczna inteligencja jest podatna na ataki hakerskie?
Artykuł Ograniczenia głębokiego uczenia się w ustawieniach przeciwnych bada, w jaki sposób sieci neuronowe mogą zostać uszkodzone przez atakującego, który może manipulować zestawem danych, z którym trenuje sieć neuronowa. Autorzy eksperymentują z siecią neuronową przeznaczoną do odczytywania odręcznych cyfr, podważając jej zdolność do czytania poprzez zniekształcanie próbek odręcznych cyfr, z …

3
Zrozumienie funkcji utraty GAN
Usiłuję zrozumieć funkcję utraty GAN przedstawioną w Understanding Generative Adversarial Networks (post na blogu napisany przez Daniela Seity). W standardowej stracie entropijnej mamy wyjście, które zostało przepuszczone przez funkcję sigmoidalną i wynikową klasyfikację binarną. Stwierdza Sieta Zatem dla [każdego] punktu danych x1x1x_1 i jego etykiety otrzymujemy następującą funkcję utraty ... …

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.