Interpretowanie sezonowości za pomocą ACF i PACF


10

Mam zestaw danych, w którym intuicja empiryczna mówi, że powinienem oczekiwać cotygodniowej sezonowości (tj. Zachowanie w sobotę i niedzielę różni się od reszty tygodnia). Czy to założenie powinno być prawdziwe, czy wykres autokorelacji nie powinien dać mi impulsów przy wielokrotnościach opóźnienia wynoszących 7?

Oto próbka danych:

data = TemporalData[{{{2012, 09, 28}, 19160768}, {{2012, 09, 19}, 
    19607936}, {{2012, 09, 08}, 7867456}, {{2012, 09, 15}, 
    11245024}, {{2012, 09, 04}, 0}, {{2012, 09, 21}, 
    24314496}, {{2012, 09, 12}, 11233632}, {{2012, 09, 03}, 
    9886496}, {{2012, 09, 09}, 9122272}, {{2012, 09, 24}, 
    23103456}, {{2012, 09, 20}, 25721472}, {{2012, 09, 11}, 
    12272160}, {{2012, 09, 25}, 21876960}, {{2012, 09, 05}, 
    7182528}, {{2012, 09, 16}, 11754752}, {{2012, 09, 23}, 
    23737248}, {{2012, 09, 26}, 20985984}, {{2012, 09, 10}, 
    12123584}, {{2012, 09, 06}, 9076736}, {{2012, 09, 17}, 
    20123328}, {{2012, 09, 18}, 20634720}, {{2012, 09, 22}, 
    23361024}, {{2012, 09, 14}, 11804928}, {{2012, 09, 07}, 
    9007200}, {{2012, 09, 02}, 9244192}, {{2012, 09, 13}, 
    11335328}, {{2012, 09, 27}, 20694720}, {{2012, 10, 26}, 
    12242112}, {{2012, 10, 15}, 10963776}, {{2012, 11, 09}, 
    9735424}, {{2012, 10, 08}, 10078240}, {{2012, 10, 31}, 
    10676736}, {{2012, 10, 20}, 11719840}, {{2012, 11, 05}, 
    10475168}, {{2012, 10, 01}, 9988416}, {{2012, 10, 24}, 
    11998688}, {{2012, 10, 12}, 10393120}, {{2012, 10, 23}, 
    11987936}, {{2012, 10, 19}, 11165536}, {{2012, 10, 04}, 
    9902720}, {{2012, 11, 16}, 10023648}, {{2012, 11, 21}, 
    10047936}, {{2012, 10, 10}, 10205568}, {{2012, 11, 08}, 
    9872832}, {{2012, 10, 21}, 12854112}, {{2012, 11, 04}, 
    10485856}, {{2012, 10, 07}, 9565248}, {{2012, 09, 30}, 
    9784864}, {{2012, 10, 29}, 12880064}, {{2012, 11, 10}, 
    8945824}, {{2012, 11, 15}, 9870880}, {{2012, 09, 29}, 
    9718080}, {{2012, 10, 18}, 10992896}, {{2012, 10, 06}, 
    9319584}, {{2012, 11, 03}, 9077024}, {{2012, 10, 03}, 
    10537408}, {{2012, 11, 22}, 9853216}, {{2012, 10, 11}, 
    10191936}, {{2012, 10, 22}, 12766816}, {{2012, 11, 07}, 
    9510624}, {{2012, 11, 14}, 9707264}, {{2012, 10, 28}, 
    12060736}, {{2012, 11, 19}, 10946880}, {{2012, 11, 11}, 
    9529568}, {{2012, 10, 09}, 9967680}, {{2012, 10, 17}, 
    12093344}, {{2012, 11, 20}, 10520800}, {{2012, 10, 05}, 
    9619136}, {{2012, 10, 25}, 11484288}, {{2012, 11, 17}, 
    9389312}, {{2012, 10, 30}, 12078944}, {{2012, 10, 14}, 
    9505984}, {{2012, 10, 02}, 9943648}, {{2012, 11, 24}, 
    9458144}, {{2012, 11, 02}, 10082944}, {{2012, 11, 01}, 
    11082912}, {{2012, 10, 13}, 9117632}, {{2012, 11, 23}, 
    10253280}, {{2012, 11, 12}, 10240672}, {{2012, 11, 06}, 
    9723456}, {{2012, 11, 13}, 9806880}, {{2012, 10, 16}, 
    12368896}, {{2012, 11, 18}, 9632800}, {{2012, 10, 27}, 10606656}}]

... i ACF:

wprowadź opis zdjęcia tutaj

... i PACF:

wprowadź opis zdjęcia tutaj


4
Być może twoja intuicja jest błędna? Osobiście lubię patrzeć na wykresy pudełkowe według dnia tygodnia. Jak te wyglądają? Alternatywnie, możesz spojrzeć na wykresy sezonowe, wykreślając zmienną zainteresowania w zależności od dnia tygodnia przez wiele tygodni, w ten sposób (ale z dniem tygodnia zamiast miesiąca na osi poziomej): otexts.com/fppfigs/a10b.png
Stephan Kolassa,

1
Patrzyłeś na to ?
tchakravarty,

Odpowiedzi:


16

Po pierwsze, oto twoja intuicja przedstawiona w uproszczonym szeregu czasowym, w którym weekend jest wyraźnie widoczny w ACF:

wprowadź opis zdjęcia tutaj Jednak ten oczekiwany wzorzec ACF można maskować, gdy dane mają pewien trend: wprowadź opis zdjęcia tutaj wprowadź opis zdjęcia tutaj

Rozwiązaniem (jeśli jest to problem) jest oszacowanie i kontrola trendu przy określaniu sezonowości.

Kod R, który wytworzył te wykresy:

# fourteen repeating 'weeks' of five zeroes and two ones
weekendeffect <- rep(c(rep(0,5),1,1),times=14)

plot(weekendeffect,
    main="Weekly pattern of five zeroes & two ones",
    xlab="Time", ylab="Value")  
acf(weekendeffect, main="ACF")

# add steady trend 
dailydrift <- 0.05
drift <- seq(from=dailydrift, to=length(weekendeffect)*dailydrift, 
   by=dailydrift)
driftingtimeseries <- drift + weekendeffect 

plot(driftingtimeseries,
    main=c("Weekly pattern with daily drift of",dailydrift),
    xlab="Time", ylab="Value")  
acf(driftingtimeseries, main=c("ACF with daily drift of",dailydrift))


# add larger trend 
dailydrift <- 0.1
drift <- seq(from=dailydrift, to=length(weekendeffect)*dailydrift, 
   by=dailydrift)
driftingtimeseries <- drift + weekendeffect 

plot(driftingtimeseries,
    main=c("Weekly pattern with daily drift of",dailydrift),
    xlab="Time", ylab="value")  
acf(driftingtimeseries, main=c("ACF with daily drift of",dailydrift))

0

Czy zastosowałeś technikę różnicowania, aby Twoje dane były nieruchome? twoja fabuła ACF sugeruje, że być może nie zrobiłeś tego kroku. Kiedy już będziesz miał stacjonarną serię, łatwiej będzie zinterpretować wykresy. Dodaję dwa źródła uniwersyteckie, które mogą pomóc w różnicowaniu i tłumaczeniu.

Uniwersytet Stanowy Pensylwanii

Uniwersytet Duke'a


dodaj referencje do linków na wypadek śmierci w przyszłości
Antoine,
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.