Mam coś w rodzaju filozoficznego pytania o to, kiedy konieczna jest korekta wielokrotnego porównania.
Pomiar ciągłego zmieniającego się czasu sygnału (w dyskretnych punktach czasowych). Od czasu do czasu zdarzają się osobne zdarzenia i chciałbym ustalić, czy zdarzenia te mają znaczący wpływ na zmierzony sygnał.
Mogę więc wziąć średni sygnał, który następuje po zdarzeniu, i zwykle widzę tam jakiś efekt z pewnym szczytem. Jeśli wybiorę czas tego szczytu i powiem test t, aby ustalić, czy jest on znaczący, a kiedy zdarzenie nie występuje, czy muszę wykonać wielokrotną korektę porównania?
Chociaż kiedykolwiek wykonałem tylko jeden test t (obliczona wartość 1), w początkowej inspekcji wizualnej wybrałem ten, który ma największy potencjalny efekt z (powiedzmy) 15 różnych wykreślonych punktów czasowych po opóźnieniu. Czy muszę wykonać wielokrotną korektę porównania dla tych 15 testów, których nigdy nie przeprowadziłem?
Gdybym nie używał inspekcji wizualnej, ale po prostu testowałem przy każdym opóźnieniu zdarzenia i wybrałem najwyższy, z pewnością musiałbym poprawić. Jestem tylko trochę zdezorientowany, czy muszę czy nie, jeśli wybór „najlepszego opóźnienia” jest dokonywany na podstawie innego kryterium niż sam test (np. Wybór wizualny, najwyższa średnia itp.)