Uwielbia mnie koncepcja kurczenia się Jamesa-Steina (tzn. Że nieliniowa funkcja pojedynczej obserwacji wektora prawdopodobnie niezależnych normalnych może być lepszym estymatorem średnich zmiennych losowych, gdzie „lepszy” jest mierzony przez błąd kwadratu ). Jednak nigdy nie widziałem tego w pracy stosowanej. Najwyraźniej nie jestem wystarczająco dobrze przeczytany. Czy są jakieś klasyczne przykłady, w których James-Stein poprawił oszacowanie w zastosowanym otoczeniu? Jeśli nie, czy ten rodzaj kurczenia się jest tylko intelektualną ciekawością?