Mam bardzo ograniczone zasoby, ponieważ pracuję z mikrokontrolerem. Czy istnieje rozszerzenie serii Taylor, wspólna tabela odnośników lub podejście rekurencyjne?
Wolałbym zrobić coś bez użycia sqrt () math.h
Mam bardzo ograniczone zasoby, ponieważ pracuję z mikrokontrolerem. Czy istnieje rozszerzenie serii Taylor, wspólna tabela odnośników lub podejście rekurencyjne?
Wolałbym zrobić coś bez użycia sqrt () math.h
Odpowiedzi:
jeśli chcesz tanie i brudne zoptymalizowane rozszerzenie serii mocy (współczynniki dla serii Taylora zbiegają się powoli) sqrt()
i kilka innych transcendentałów, mam trochę kodu z dawno temu. sprzedałem ten kod, ale nikt nie zapłacił mi za niego od prawie dekady. więc myślę, że wydam go do publicznego użytku. ten konkretny plik był dla aplikacji, w której procesor miał zmiennoprzecinkowy (pojedyncza precyzja IEEE-754) i mieli kompilator C i system deweloperski, ale niemają (lub nie chcieli połączyć) stdlib, który miałby standardowe funkcje matematyczne. nie potrzebowali doskonałej precyzji, ale chcieli, aby wszystko było szybkie. możesz dość łatwo odtworzyć kod, aby zobaczyć, jakie są współczynniki serii mocy i napisać własny kod. kod ten zakłada IEEE-754 i zamaskował bity dla mantysy i wykładnika.
wygląda na to, że „znacznik kodu” SE jest nieprzyjazny dla znaków kąta (wiesz „>” lub „<”), więc prawdopodobnie będziesz musiał nacisnąć „edytuj”, aby zobaczyć wszystko.
//
// FILE: __functions.h
//
// fast and approximate transcendental functions
//
// copyright (c) 2004 Robert Bristow-Johnson
//
// rbj@audioimagination.com
//
#ifndef __FUNCTIONS_H
#define __FUNCTIONS_H
#define TINY 1.0e-8
#define HUGE 1.0e8
#define PI (3.1415926535897932384626433832795028841972) /* pi */
#define ONE_OVER_PI (0.3183098861837906661338147750939)
#define TWOPI (6.2831853071795864769252867665590057683943) /* 2*pi */
#define ONE_OVER_TWOPI (0.15915494309189535682609381638)
#define PI_2 (1.5707963267948966192313216916397514420986) /* pi/2 */
#define TWO_OVER_PI (0.636619772367581332267629550188)
#define LN2 (0.6931471805599453094172321214581765680755) /* ln(2) */
#define ONE_OVER_LN2 (1.44269504088896333066907387547)
#define LN10 (2.3025850929940456840179914546843642076011) /* ln(10) */
#define ONE_OVER_LN10 (0.43429448190325177635683940025)
#define ROOT2 (1.4142135623730950488016887242096980785697) /* sqrt(2) */
#define ONE_OVER_ROOT2 (0.707106781186547438494264988549)
#define DB_LOG2_ENERGY (3.01029995663981154631945610163) /* dB = DB_LOG2_ENERGY*__log2(energy) */
#define DB_LOG2_AMPL (6.02059991327962309263891220326) /* dB = DB_LOG2_AMPL*__log2(amplitude) */
#define ONE_OVER_DB_LOG2_AMPL (0.16609640474436811218256075335) /* amplitude = __exp2(ONE_OVER_DB_LOG2_AMPL*dB) */
#define LONG_OFFSET 4096L
#define FLOAT_OFFSET 4096.0
float __sqrt(float x);
float __log2(float x);
float __exp2(float x);
float __log(float x);
float __exp(float x);
float __pow(float x, float y);
float __sin_pi(float x);
float __cos_pi(float x);
float __sin(float x);
float __cos(float x);
float __tan(float x);
float __atan(float x);
float __asin(float x);
float __acos(float x);
float __arg(float Imag, float Real);
float __poly(float *a, int order, float x);
float __map(float *f, float scaler, float x);
float __discreteMap(float *f, float scaler, float x);
unsigned long __random();
#endif
//
// FILE: __functions.c
//
// fast and approximate transcendental functions
//
// copyright (c) 2004 Robert Bristow-Johnson
//
// rbj@audioimagination.com
//
#define STD_MATH_LIB 0
#include "__functions.h"
#if STD_MATH_LIB
#include "math.h" // angle brackets don't work with SE markup
#endif
float __sqrt(register float x)
{
#if STD_MATH_LIB
return (float) sqrt((double)x);
#else
if (x > 5.877471754e-39)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07; /* divide by 0x800000 */
accumulator = 1.0 + 0.49959804148061*x;
xPower = x*x;
accumulator += -0.12047308243453*xPower;
xPower *= x;
accumulator += 0.04585425015501*xPower;
xPower *= x;
accumulator += -0.01076564682800*xPower;
if (intPart & 0x00000001)
{
accumulator *= ROOT2; /* an odd input exponent means an extra sqrt(2) in the output */
}
xBits.i = intPart >> 1; /* divide exponent by 2, lose LSB */
xBits.i += 127; /* rebias exponent */
xBits.i <<= 23; /* move biased exponent into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0;
}
#endif
}
float __log2(register float x)
{
#if STD_MATH_LIB
return (float) (ONE_OVER_LN2*log((double)x));
#else
if (x > 5.877471754e-39)
{
register float accumulator, xPower;
register long intPart;
register union {float f; long i;} xBits;
xBits.f = x;
intPart = ((xBits.i)>>23); /* get biased exponent */
intPart -= 127; /* unbias it */
x = (float)(xBits.i & 0x007FFFFF); /* mask off exponent leaving 0x800000*(mantissa - 1) */
x *= 1.192092895507812e-07; /* divide by 0x800000 */
accumulator = 1.44254494359510*x;
xPower = x*x;
accumulator += -0.71814525675041*xPower;
xPower *= x;
accumulator += 0.45754919692582*xPower;
xPower *= x;
accumulator += -0.27790534462866*xPower;
xPower *= x;
accumulator += 0.12179791068782*xPower;
xPower *= x;
accumulator += -0.02584144982967*xPower;
return accumulator + (float)intPart;
}
else
{
return -HUGE;
}
#endif
}
float __exp2(register float x)
{
#if STD_MATH_LIB
return (float) exp(LN2*(double)x);
#else
if (x >= -127.0)
{
register float accumulator, xPower;
register union {float f; long i;} xBits;
xBits.i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET; /* integer part */
x -= (float)(xBits.i); /* fractional part */
accumulator = 1.0 + 0.69303212081966*x;
xPower = x*x;
accumulator += 0.24137976293709*xPower;
xPower *= x;
accumulator += 0.05203236900844*xPower;
xPower *= x;
accumulator += 0.01355574723481*xPower;
xBits.i += 127; /* bias integer part */
xBits.i <<= 23; /* move biased int part into exponent bits */
return accumulator * xBits.f;
}
else
{
return 0.0;
}
#endif
}
float __log(register float x)
{
#if STD_MATH_LIB
return (float) log((double)x);
#else
return LN2*__log2(x);
#endif
}
float __exp(register float x)
{
#if STD_MATH_LIB
return (float) exp((double)x);
#else
return __exp2(ONE_OVER_LN2*x);
#endif
}
float __pow(float x, float y)
{
#if STD_MATH_LIB
return (float) pow((double)x, (double)y);
#else
return __exp2(y*__log2(x));
#endif
}
float __sin_pi(register float x)
{
#if STD_MATH_LIB
return (float) sin(PI*(double)x);
#else
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 3.14159265358979*x;
xPower = xSquared*x;
accumulator += -5.16731953364340*xPower;
xPower *= xSquared;
accumulator += 2.54620566822659*xPower;
xPower *= xSquared;
accumulator += -0.586027023087261*xPower;
xPower *= xSquared;
accumulator += 0.06554823491427*xPower;
return accumulator;
#endif
}
float __cos_pi(register float x)
{
#if STD_MATH_LIB
return (float) cos(PI*(double)x);
#else
register float accumulator, xPower, xSquared;
register long evenIntPart = ((long)(0.5*x + 1024.5) - 1024)<<1;
x -= (float)evenIntPart;
xSquared = x*x;
accumulator = 1.57079632679490*x; /* series for sin(PI/2*x) */
xPower = xSquared*x;
accumulator += -0.64596406188166*xPower;
xPower *= xSquared;
accumulator += 0.07969158490912*xPower;
xPower *= xSquared;
accumulator += -0.00467687997706*xPower;
xPower *= xSquared;
accumulator += 0.00015303015470*xPower;
return 1.0 - 2.0*accumulator*accumulator; /* cos(w) = 1 - 2*(sin(w/2))^2 */
#endif
}
float __sin(register float x)
{
#if STD_MATH_LIB
return (float) sin((double)x);
#else
x *= ONE_OVER_PI;
return __sin_pi(x);
#endif
}
float __cos(register float x)
{
#if STD_MATH_LIB
return (float) cos((double)x);
#else
x *= ONE_OVER_PI;
return __cos_pi(x);
#endif
}
float __tan(register float x)
{
#if STD_MATH_LIB
return (float) tan((double)x);
#else
x *= ONE_OVER_PI;
return __sin_pi(x)/__cos_pi(x);
#endif
}
float __atan(register float x)
{
#if STD_MATH_LIB
return (float) atan((double)x);
#else
register float accumulator, xPower, xSquared, offset;
offset = 0.0;
if (x < -1.0)
{
offset = -PI_2;
x = -1.0/x;
}
else if (x > 1.0)
{
offset = PI_2;
x = -1.0/x;
}
xSquared = x*x;
accumulator = 1.0;
xPower = xSquared;
accumulator += 0.33288950512027*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992*xPower;
return offset + x/accumulator;
#endif
}
float __asin(register float x)
{
#if STD_MATH_LIB
return (float) asin((double)x);
#else
return __atan(x/__sqrt(1.0 - x*x));
#endif
}
float __acos(register float x)
{
#if STD_MATH_LIB
return (float) acos((double)x);
#else
return __atan(__sqrt(1.0 - x*x)/x);
#endif
}
float __arg(float Imag, float Real)
{
#if STD_MATH_LIB
return (float) atan2((double)Imag, (double)Real);
#else
register float accumulator, xPower, xSquared, offset, x;
if (Imag > 0.0)
{
if (Imag <= -Real)
{
offset = PI;
x = Imag/Real;
}
else if (Imag > Real)
{
offset = PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0;
x = Imag/Real;
}
}
else
{
if (Imag >= Real)
{
offset = -PI;
x = Imag/Real;
}
else if (Imag < -Real)
{
offset = -PI_2;
x = -Real/Imag;
}
else
{
offset = 0.0;
x = Imag/Real;
}
}
xSquared = x*x;
accumulator = 1.0;
xPower = xSquared;
accumulator += 0.33288950512027*xPower;
xPower *= xSquared;
accumulator += -0.08467922817644*xPower;
xPower *= xSquared;
accumulator += 0.03252232640125*xPower;
xPower *= xSquared;
accumulator += -0.00749305860992*xPower;
return offset + x/accumulator;
#endif
}
float __poly(float *a, int order, float x)
{
register float accumulator = 0.0, xPower;
register int n;
accumulator = a[0];
xPower = x;
for (n=1; n<=order; n++)
{
accumulator += a[n]*xPower;
xPower *= x;
}
return accumulator;
}
float __map(float *f, float scaler, float x)
{
register long i;
x *= scaler;
i = (long)(x + FLOAT_OFFSET) - LONG_OFFSET; /* round down without floor() */
return f[i] + (f[i+1] - f[i])*(x - (float)i); /* linear interpolate between points */
}
float __discreteMap(float *f, float scaler, float x)
{
register long i;
x *= scaler;
i = (long)(x + (FLOAT_OFFSET+0.5)) - LONG_OFFSET; /* round to nearest */
return f[i];
}
unsigned long __random()
{
static unsigned long seed0 = 0x5B7A2775, seed1 = 0x80C7169F;
seed0 += seed1;
seed1 += seed0;
return seed1;
}
stdlib
tego.
Jeśli go nie widziałeś, „pierwiastek kwadratowy Quake” jest po prostu mistyczny. Wykorzystuje trochę magii na poziomie bitowym, aby dać ci bardzo dobre pierwsze przybliżenie, a następnie używa rundy lub dwóch przybliżeń Newtona, aby dokonać korekty. Może ci to pomóc, jeśli pracujesz z ograniczonymi zasobami.
https://en.wikipedia.org/wiki/Fast_inverse_square_root
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
Możesz także przybliżyć funkcję pierwiastka kwadratowego za pomocą metody Newtona . Metoda Newtona jest sposobem przybliżenia, gdzie są pierwiastki funkcji. Jest to również metoda iteracyjna , w której wynik z poprzedniej iteracji jest wykorzystywany w następnej iteracji aż do konwergencji. Równanie metody Newtona do odgadnięcia, gdzie jest pierwiastek z funkcji przy początkowym zgadywaniu x 0, jest zdefiniowane jako:
Jest jednak ostrzeżenie, które powinniśmy rozważyć, patrząc na powyższe równanie. W przypadku pierwiastków kwadratowych rozwiązanie powinno być dodatnie, więc aby iteracje (i wynik) były dodatnie, należy spełnić następujący warunek:
W związku z tym:
Gdy twój tag szuka algorytmu C
, napiszmy go bardzo szybko:
#include <stdio.h> // For printf
#include <math.h> // For fabs
void main()
{
float a = 5.0; // Number we want to take the square root of
float x = 1.0; // Initial guess
float xprev; // Root for previous iteration
int count; // Counter for iterations
// Find a better initial guess
// Half at each step until condition is satisfied
while (x*x*a >= 3.0)
x *= 0.5;
printf("Initial guess: %f\n", x);
count = 1;
do {
xprev = x; // Save for previous iteration
printf("Iteration #%d: %f\n", count++, x);
x = 0.5*(3*xprev - (xprev*xprev*xprev)*a); // Find square root of the reciprocal
} while (fabs(x - xprev) > 1e-6);
x *= a; // Actual answer - Multiply by a
printf("Square root is: %f\n", x);
printf("Done!");
}
Jest to dość podstawowa implementacja metody Newtona. Zauważ, że ciągle zmniejszam początkowe domysły o połowę, dopóki warunek, o którym mówiliśmy wcześniej, nie jest spełniony. Próbuję również znaleźć pierwiastek kwadratowy z 5. Wiemy, że jest to mniej więcej równa 2.236. Użycie powyższego kodu daje następujące dane wyjściowe:
Initial guess: 0.500000
Iteration #1: 0.500000
Iteration #2: 0.437500
Iteration #3: 0.446899
Iteration #4: 0.447213
Square root is: 2.236068
Done!
Initial guess: 0.015625
Iteration #1: 0.015625
Iteration #2: 0.004601
Iteration #3: 0.006420
Iteration #4: 0.008323
Iteration #5: 0.009638
Iteration #6: 0.010036
Iteration #7: 0.010062
Square root is: 99.378067
Done!
Jak widać, jedyną różnicą jest to, ile iteracji jest wymaganych do obliczenia pierwiastka kwadratowego. Im większa liczba tego, co chcesz obliczyć, tym więcej iteracji zajmie.
Wiem, że ta metoda została już zasugerowana we wcześniejszym poście, ale pomyślałem, że wyprowadzę tę metodę i dostarczę trochę kodu!
tak, seria mocy może szybko i skutecznie aproksymować pierwiastek kwadratowy i tylko w ograniczonej dziedzinie. im szersza domena, tym więcej terminów będziesz potrzebować w swojej serii mocy, aby utrzymać błąd na wystarczająco niskim poziomie.
gdzie
jeśli jest zmiennoprzecinkowy, musisz oddzielić wykładnik potęgi i mantysę, tak jak robi to mój kod C w drugiej odpowiedzi.
W rzeczywistości odbywa się to przez rozwiązanie równania kwadratowego za pomocą metody Newtona:
http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
W przypadku liczb większych niż jeden możesz użyć następującego rozszerzenia Taylora:
W granicach 4% precyzji, jeśli dobrze pamiętam. Był używany przez inżynierów, przed linijkami logarytmicznymi i kalkulatorami. Nauczyłem się tego w Notes et formules de l'ingénieur, De Laharpe , 1923