Napisałem kodu jednocześnie temu, która polegała obliczyć bez korzystania z funkcji biblioteki. Wczoraj sprawdzałem stary kod i starałem się, aby był jak najszybciej (i poprawiony). Oto moja dotychczasowa próba:
const double ee = exp(1);
double series_ln_taylor(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now;
int i, flag = 1;
if ( n <= 0 ) return 1e-300;
if ( n * ee < 1 )
n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
for ( term = 1; term < n ; term *= ee, lgVal++ );
n /= term;
/* log(1 - x) = -x - x**2/2 - x**3/3... */
n = 1 - n;
now = term = n;
for ( i = 1 ; ; ){
lgVal -= now;
term *= n;
now = term / ++i;
if ( now < 1e-17 ) break;
}
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}
Tutaj staram się znaleźć tak, e właśnie nad n, a następnie dodać wartość logarytmu z n , który jest mniejszy niż 1. W tym momencie, dla ekspansji TayloralOg(1-x)może być stosowany bez obawy.
Ostatnio zainteresowałem się analizą numeryczną i dlatego nie mogę przestać zadawać pytania, o ile szybciej ten segment kodu można uruchomić w praktyce, a jednocześnie jest wystarczająco poprawny? Czy muszę przejść na inne metody, na przykład używając ciągłego ułamka, takiego jak ten ?
funkcję dostarczaną przez C standardowej biblioteki jest prawie 5.1 razy szybciej niż w tym wykonaniu.
AKTUALIZACJA 1 : Korzystając z hiperbolicznej serii arctan wspomnianej w Wikipedii , obliczenia wydają się prawie 2,2 razy wolniejsze niż standardowa funkcja dziennika biblioteki C. Chociaż nie sprawdziłem dokładnie wydajności, a w przypadku większych liczb moja obecna implementacja wydaje się NAPRAWDĘ powolna. Chcę sprawdzić zarówno moją implementację pod kątem związanego z błędem, jak i średniego czasu dla szerokiego zakresu liczb, jeśli mogę. Oto mój drugi wysiłek.
double series_ln_arctanh(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now, sm;
int i, flag = 1;
if ( n <= 0 ) return 1e-300;
if ( n * ee < 1 ) n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
for ( term = 1; term < n ; term *= ee, lgVal++ );
n /= term;
/* log(x) = 2 arctanh((x-1)/(x+1)) */
n = (1 - n)/(n + 1);
now = term = n;
n *= n;
sm = 0;
for ( i = 3 ; ; i += 2 ){
sm += now;
term *= n;
now = term / i;
if ( now < 1e-17 ) break;
}
lgVal -= 2*sm;
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}
Każda sugestia lub krytyka jest mile widziana.
double series_ln_better(double n){ /* n = e^a * b, where a is an non-negative integer */
double lgVal = 0, term, now, sm;
int i, flag = 1;
if ( n == 0 ) return -1./0.; /* -inf */
if ( n < 0 ) return 0./0.; /* NaN*/
if ( n < 1 ) n = 1.0 / n, flag = -1; /* for extremely small n, use e^-x = 1/n */
/* the cutoff iteration is 650, as over e**650, term multiplication would
overflow. For larger numbers, the loop dominates the arctanh approximation
loop (with having 13-15 iterations on average for tested numbers so far */
for ( term = 1; term < n && lgVal < 650 ; term *= ee, lgVal++ );
if ( lgVal == 650 ){
n /= term;
for ( term = 1 ; term < n ; term *= ee, lgVal++ );
}
n /= term;
/* log(x) = 2 arctanh((x-1)/(x+1)) */
n = (1 - n)/(n + 1);
now = term = n;
n *= n;
sm = 0;
/* limiting the iteration for worst case scenario, maximum 24 iteration */
for ( i = 3 ; i < 50 ; i += 2 ){
sm += now;
term *= n;
now = term / i;
if ( now < 1e-17 ) break;
}
lgVal -= 2*sm;
if ( flag == -1 ) lgVal = -lgVal;
return lgVal;
}