Oto porównanie wydajności trzech najbardziej pozytywnych odpowiedzi przy użyciu notebooka Jupyter. Dane wejściowe to losowa macierz rzadka 1M x 100K o gęstości 0,001, zawierająca 100M wartości niezerowych:
from scipy.sparse import random
matrix = random(1000000, 100000, density=0.001, format='csr')
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
io.mmwrite
/ io.mmread
from scipy.sparse import io
%time io.mmwrite('test_io.mtx', matrix)
CPU times: user 4min 37s, sys: 2.37 s, total: 4min 39s
Wall time: 4min 39s
%time matrix = io.mmread('test_io.mtx')
CPU times: user 2min 41s, sys: 1.63 s, total: 2min 43s
Wall time: 2min 43s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in COOrdinate format>
Filesize: 3.0G.
(zwróć uwagę, że format został zmieniony z csr na coo).
np.savez
/ np.load
import numpy as np
from scipy.sparse import csr_matrix
def save_sparse_csr(filename, array):
np.savez(filename, data=array.data, indices=array.indices,
indptr=array.indptr, shape=array.shape)
def load_sparse_csr(filename):
loader = np.load(filename + '.npz')
return csr_matrix((loader['data'], loader['indices'], loader['indptr']),
shape=loader['shape'])
%time save_sparse_csr('test_savez', matrix)
CPU times: user 1.26 s, sys: 1.48 s, total: 2.74 s
Wall time: 2.74 s
%time matrix = load_sparse_csr('test_savez')
CPU times: user 1.18 s, sys: 548 ms, total: 1.73 s
Wall time: 1.73 s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
Filesize: 1.1G.
cPickle
import cPickle as pickle
def save_pickle(matrix, filename):
with open(filename, 'wb') as outfile:
pickle.dump(matrix, outfile, pickle.HIGHEST_PROTOCOL)
def load_pickle(filename):
with open(filename, 'rb') as infile:
matrix = pickle.load(infile)
return matrix
%time save_pickle(matrix, 'test_pickle.mtx')
CPU times: user 260 ms, sys: 888 ms, total: 1.15 s
Wall time: 1.15 s
%time matrix = load_pickle('test_pickle.mtx')
CPU times: user 376 ms, sys: 988 ms, total: 1.36 s
Wall time: 1.37 s
matrix
<1000000x100000 sparse matrix of type '<type 'numpy.float64'>'
with 100000000 stored elements in Compressed Sparse Row format>
Filesize: 1.1G.
Uwaga : cPickle nie działa z bardzo dużymi obiektami (zobacz tę odpowiedź ). Z mojego doświadczenia wynika, że nie działało to dla matrycy 2,7M x 50k z 270M wartościami niezerowymi.
np.savez
rozwiązanie działało dobrze.
Wniosek
(oparty na tym prostym teście dla macierzy CSR)
cPickle
jest najszybszą metodą, ale nie działa z bardzo dużymi macierzami, np.savez
jest tylko trochę wolniejszy, podczas gdy io.mmwrite
jest znacznie wolniejszy, tworzy większy plik i przywraca zły format. Więc np.savez
jest tutaj zwycięzcą.