Czy jest jakiś szybszy sposób sprawdzenia, czy listy na liście są równoważne?


9

Tutaj mam liczby całkowite 1:7dla czterech różnych partycji, tj. {1}, {2,3,4}, {5,6} i {7}, a te partycje są zapisane na liście, tj list(1,c(2,3,4),c(5,6),7). Traktuję partycje jak zestawy, tak że różne permutacje elementów w obrębie jednej partycji powinny być rozpoznawane jako ta sama. Na przykład list(1,c(2,3,4),c(5,6),7)i list(7,1,c(2,3,4),c(6,5))są równoważne.

Zauważ, że nie ma powtórzeń dla elementów na liście, np. Nie list(c(1,2),c(2,1),c(1,2)), ponieważ problemem jest omawianie wyłącznych partycji w całym zestawie.

Wymieniłem niektóre z różnych permutacji na liście, lstjak poniżej

lst <- list(list(1,c(2,3,4),c(5,6),7),
            list(c(2,3,4),1,7,c(5,6)),
            list(1,c(2,3,4),7,c(6,5)),
            list(7,1,c(3,2,4),c(5,6)))

i chcę sprawdzić, czy wszystkie permutacje są równoważne. Jeśli tak, to otrzymamy wynik TRUE.

Co zrobiłem tak daleko jest do sortowania elementów w każdej partycji, a używany setdiff()z interset()i union()aby ją ocenić (patrz mój kod poniżej)

s <- Map(function(v) Map(sort,v),lst)
equivalent <- length(setdiff(Reduce(union,s),Reduce(intersect,s),))==0

Jednak myślę, że ta metoda byłaby wolna, ilekroć rozmiar partycji zostanie zwiększony. Czy jest jakieś szybsze podejście, aby to zrobić? Doceniany z góry!

  • niektóre przypadki testowe (dane o małym rozmiarze)
# should return `TRUE`
lst1 <- list(list(1,c(2,3,4),c(5,6)),
            list(c(2,3,4),1,c(5,6)),
            list(1,c(2,3,4),c(6,5)))

# should return `TRUE`
lst2 <- list(list(1:2, 3:4), list(3:4, 1:2))

# should return `FALSE`
lst3 <- list(list(1,c(2,3,4),c(5,6)), list(c(2,3,4),1,c(5,6)), list(1,c(2,3,5),c(6,4)))

1
Myślę, że można uniknąć wielu Mappołączeń
akrun,

1
Proponuję dodać kilka pytań testowych do twojego pytania, jeden z jednakowymi partycjami, lst_equal = list(list(1:2, 3:4), list(3:4, 1:2))a także taki, w którym wynik powinien być FALSE, być możelst_false <- list(list(1,c(2,3,4),c(5,6)), list(c(2,3,4),1,c(5,6)), list(1,c(2,3,5),c(6,4)))
Gregor Thomas

3
Zdecydowanie polecam posiadanie wielu małych przykładów - w tym tych, w których oczekiwany jest wynik FALSE. W ten sposób, gdy odpowiedź działa na niektórych, ale nie wszystkich przypadkach testowych, łatwo zdiagnozować dlaczego. Gdy jest tylko jeden przykład, tracisz niuans w wynikach testu. Przyjemnie jest też dodawać nowe przykłady, zamiast zmieniać istniejące przykłady pod osobami, które już nad nimi pracowały.
Gregor Thomas

1
Chcę dodać komentarz, że twój opis sprawia, że ​​myślę, że oczekujesz PRAWDZIWEGO wyniku, po prostu go weryfikujesz. Gdyby tak nie było (np. Jeśli uważasz, że dostaniesz znaczną liczbę FAŁSZ), a zwłaszcza jeśli długość lstjest potencjalnie długa, możesz zyskać na wydajności przy innych podejściach. Np. Pierwsza kontrola, length(unique(lengths(lst))) == 1która bardzo szybko powróciłaby, FALSEgdyby którakolwiek z wewnętrznych list zawierała nieprawidłową liczbę elementów ....
Gregor Thomas

1
Jeśli który przechodzi, można chcieć iść jeden element na raz przez lstporównując lst[[i]]do lst[[1]], i w ten sposób można zatrzymać jak najszybciej znaleźć niedopasowania, zamiast robić wszystkich porównań. Jeśli lstjest długi, a FALSEs są powszechne, może to być duży wzrost wydajności, ale prawdopodobnie nie jest tego wart.
Gregor Thomas

Odpowiedzi:


6

o Ri każdy wariant postu nie kompletny bez rozwiązania z .

Aby zmaksymalizować wydajność, niezwykle ważne będzie wybranie odpowiedniej struktury danych. Nasza struktura danych musi przechowywać unikalne wartości, a także mieć szybkie wstawianie / dostęp. To jest dokładnie to, co std :: unordered_set ucieleśnia . Musimy jedynie ustalić, w jaki sposób możemy jednoznacznie zidentyfikować każdego vectorz nieuporządkowanych integers.

Wejdz do podstawowe twierdzenie arytmetyki

Umowa o wolnym handlu stanowi, że każdą liczbę można jednoznacznie przedstawić (do rzędu czynników) przez iloczyn liczb pierwszych.

Oto przykład pokazujący, jak możemy skorzystać z umowy o wolnym handlu, aby szybko odszyfrować, czy dwa wektory są równoważne w kolejności (uwaga Pponiżej: lista liczb pierwszych ...(2, 3, 5, 7, 11, etc.) :

                   Maps to                    Maps to              product
vec1 = (1, 2, 7)    -->>    P[1], P[2], P[7]   --->>   2,  3, 17     -->>   102
vec2 = (7, 3, 1)    -->>    P[7], P[3], P[1]   --->>  17,  5,  2     -->>   170
vec3 = (2, 7, 1)    -->>    P[2], P[7], P[1]   --->>   3, 17,  2     -->>   102

Z tego widzimy to vec1 i vec3poprawnie mapujemy na ten sam numer, a jednocześnie vec2mapujemy na inną wartość.

Ponieważ nasze rzeczywiste wektory mogą zawierać do stu liczb całkowitych mniejszych niż 1000, zastosowanie FTA da bardzo duże liczby. Możemy to obejść, korzystając z logarytmu reguły produktu:

log b (xy) = log b (x) + log b (y)

Mając to do dyspozycji, będziemy w stanie poradzić sobie z przykładem o znacznie większej liczbie (zaczyna się to pogarszać na bardzo dużych przykładach).

Po pierwsze, potrzebujemy prostego generatora liczb pierwszych (uwaga: W rzeczywistości generujemy log każdej liczby pierwszej).

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::plugins(cpp11)]]

void getNPrimes(std::vector<double> &logPrimes) {

    const int n = logPrimes.size();
    const int limit = static_cast<int>(2.0 * static_cast<double>(n) * std::log(n));
    std::vector<bool> sieve(limit + 1, true);

    int lastP = 3;
    const int fsqr = std::sqrt(static_cast<double>(limit));

    while (lastP <= fsqr) {
        for (int j = lastP * lastP; j <= limit; j += 2 * lastP)
            sieve[j] = false;

        int ind = 2;

        for (int k = lastP + 2; !sieve[k]; k += 2)
            ind += 2;

        lastP += ind;
    }

    logPrimes[0] = std::log(2.0);

    for (int i = 3, j = 1; i <= limit && j < n; i += 2)
        if (sieve[i])
            logPrimes[j++] = std::log(static_cast<double>(i));
}

A oto główne wdrożenie:

// [[Rcpp::export]]
bool f_Rcpp_Hash(List x) {

    List tempLst = x[0];
    const int n = tempLst.length();
    int myMax = 0;

    // Find the max so we know how many primes to generate
    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        const int tempMax = *std::max_element(v.cbegin(), v.cend());

        if (tempMax > myMax)
            myMax = tempMax;
    }

    std::vector<double> logPrimes(myMax + 1, 0.0);
    getNPrimes(logPrimes);
    double sumMax = 0.0;

    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        double mySum = 0.0;

        for (auto j: v)
            mySum += logPrimes[j];

        if (mySum > sumMax)
            sumMax = mySum;
    }

    // Since all of the sums will be double values and we want to
    // ensure that they are compared with scrutiny, we multiply
    // each sum by a very large integer to bring the decimals to
    // the right of the zero and then convert them to an integer.
    // E.g. Using the example above v1 = (1, 2, 7) & v2 = (7, 3, 1)
    //              
    //    sum of log of primes for v1 = log(2) + log(3) + log(17)
    //                               ~= 4.62497281328427
    //
    //    sum of log of primes for v2 = log(17) + log(5) + log(2)
    //                               ~= 5.13579843705026
    //    
    //    multiplier = floor(.Machine$integer.max / 5.13579843705026)
    //    [1] 418140173
    //    
    // Now, we multiply each sum and convert to an integer
    //    
    //    as.integer(4.62497281328427 * 418140173)
    //    [1] 1933886932    <<--   This is the key for v1
    //
    //    as.integer(5.13579843705026 * 418140173)
    //    [1] 2147483646    <<--   This is the key for v2

    const uint64_t multiplier = std::numeric_limits<int>::max() / sumMax;
    std::unordered_set<uint64_t> canon;
    canon.reserve(n);

    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        double mySum = 0.0;

        for (auto j: v)
            mySum += logPrimes[j];

        canon.insert(static_cast<uint64_t>(multiplier * mySum));
    }

    const auto myEnd = canon.end();

    for (auto it = x.begin() + 1; it != x.end(); ++it) {
        List tempLst = *it;

        if (tempLst.length() != n)
            return false;

        for (int j = 0; j < n; ++j) {
            IntegerVector v = tempLst[j];
            double mySum = 0.0;

            for (auto k: v)
                mySum += logPrimes[k];

            const uint64_t key = static_cast<uint64_t>(multiplier * mySum);

            if (canon.find(key) == myEnd)
                return false;
        }
    }

    return true;
}

Oto wyniki po zastosowaniu lst1, lst2, lst3, & lst (the large one)przez @GKi.

f_Rcpp_Hash(lst)
[1] TRUE

f_Rcpp_Hash(lst1)
[1] TRUE

f_Rcpp_Hash(lst2)
[1] FALSE

f_Rcpp_Hash(lst3)
[1] FALSE

A oto niektóre testy porównawcze z unitsparametrem ustawionym na relative.

microbenchmark(check = 'equal', times = 10
               , unit = "relative"
               , f_ThomsIsCoding(lst3)
               , f_chinsoon12(lst3)
               , f_GKi_6a(lst3)
               , f_GKi_6b(lst3)
               , f_Rcpp_Hash(lst3))
Unit: relative
                 expr       min        lq      mean    median        uq       max neval
f_ThomsIsCoding(lst3) 84.882393 63.541468 55.741646 57.894564 56.732118 33.142979    10
   f_chinsoon12(lst3) 31.984571 24.320220 22.148787 22.393368 23.599284 15.211029    10
       f_GKi_6a(lst3)  7.207269  5.978577  5.431342  5.761809  5.852944  3.439283    10
       f_GKi_6b(lst3)  7.399280  5.751190  6.350720  5.484894  5.893290  8.035091    10
    f_Rcpp_Hash(lst3)  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000    10


microbenchmark(check = 'equal', times = 10
               , unit = "relative"
               , f_ThomsIsCoding(lst)
               , f_chinsoon12(lst)
               , f_GKi_6a(lst)
               , f_GKi_6b(lst)
               , f_Rcpp_Hash(lst))
Unit: relative
                expr        min         lq       mean     median        uq       max neval
f_ThomsIsCoding(lst) 199.776328 202.318938 142.909407 209.422530 91.753335 85.090838    10
   f_chinsoon12(lst)   9.542780   8.983248   6.755171   9.766027  4.903246  3.834358    10
       f_GKi_6a(lst)   3.169508   3.158366   2.555443   3.731292  1.902140  1.649982    10
       f_GKi_6b(lst)   2.992992   2.943981   2.019393   3.046393  1.315166  1.069585    10
    f_Rcpp_Hash(lst)   1.000000   1.000000   1.000000   1.000000  1.000000  1.000000    10

Około 3 razy szybsze niż najszybsze rozwiązanie na większym przykładzie.

Co to znaczy?

Dla mnie ten wynik base Rświadczy o pięknie i wydajności wyświetlanych przez @GKi, @ chinsoon12, @Gregor, @ThomasIsCoding i więcej. Napisaliśmy około 100 wierszy bardzo specyficznych, C++aby uzyskać umiarkowane przyspieszenie. Szczerze base Rmówiąc , rozwiązania wywołują głównie skompilowany kod i wykorzystują tabele skrótów, jak to zrobiliśmy powyżej.


1
@ThomasIsCoding, jestem zaszczycony, że wybrałeś moją odpowiedź, ale szczerze wierzę, że inne odpowiedzi są lepsze.
Joseph Wood,

1
Dziękuję bardzo za Twój wkład! Twoja praca jest doskonała!
ThomasIsCoding

5

Po posortowaniu możesz użyć duplicatedi all.

s <- lapply(lst, function(x) lapply(x, sort)) #Sort vectors
s <- lapply(s, function(x) x[order(vapply(x, "[", 1, 1))]) #Sort lists
all(duplicated(s)[-1]) #Test if there are all identical
#length(unique(s)) == 1 #Alternative way to test if all are identical

Alternatywnie: Sortuj w jednej pętli

s <- lapply(lst, function(x) {
  tt <- lapply(x, sort)
  tt[order(vapply(tt, "[", 1, 1))]
})
all(duplicated(s)[-1])

Alternatywa: Sortuj podczas pętli i zezwól na wcześniejsze wyjście

s <- lapply(lst[[1]], sort)
s <- s[order(vapply(s, "[", 1, 1))]
tt  <- TRUE
for(i in seq(lst)[-1]) {
  x <- lapply(lst[[i]], sort)
  x <- x[order(vapply(x, "[", 1, 1))]
  if(!identical(s, x)) {
    tt  <- FALSE
    break;
  }
}
tt

lub za pomocą setequal

s <- lapply(lst[[1]], sort)
tt  <- TRUE
for(i in seq(lst)[-1]) {
  x <- lapply(lst[[i]], sort)
  if(!setequal(s, x)) {
    tt  <- FALSE
    break;
  }
}
tt

lub nieznacznie ulepszając pomysł @ chinsoon12, aby wymienić listę na wektorze!

s <- lst[[1]][order(vapply(lst[[1]], min, 1))]
s <- rep(seq_along(s), lengths(s))[order(unlist(s))]
tt <- TRUE
for(i in seq(lst)[-1]) {
  x <- lst[[i]][order(vapply(lst[[i]], min, 1))]
  x <- rep(seq_along(x), lengths(x))[order(unlist(x))]
  if(!identical(s, x)) {tt <- FALSE; break;}
}
tt

lub unikaj drugiego order

s <- lst[[1]][order(vapply(lst[[1]], min, 1))]
s <- rep(seq_along(s), lengths(s))[order(unlist(s))]
y <- s
tt <- TRUE
for(i in seq(lst)[-1]) {
  x <- lst[[i]][order(vapply(lst[[i]], min, 1))]
  y <- y[0]
  y[unlist(x)] <- rep(seq_along(x), lengths(x))
  if(!identical(s, y)) {tt <- FALSE; break;}
}
tt

lub wymień orderz match(lub fmatch)

x <- lst[[1]]
s <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
s <- match(s, unique(s))
tt <- TRUE
for(i in seq(lst)[-1]) {
  x <- lst[[i]]
  y <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
  y <- match(y, unique(y))
  if(!identical(s, y)) {tt <- FALSE; break;}
}
tt

Lub bez wcześniejszego wyjścia.

s <- lapply(lst, function(x) {
  y <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
  match(y, unique(y))
})
all(duplicated(s)[-1])

lub napisane w C ++

sourceCpp(code = "#include <Rcpp.h>
#include <vector>
using namespace Rcpp;
// [[Rcpp::plugins(cpp11)]]
// [[Rcpp::export]]
bool f_GKi_6_Rcpp(const List &x) {
  const List &x0 = x[0];
  const unsigned int n = x0.length();
  unsigned int nn = 0;
  for (List const &i : x0) {nn += i.length();}
  std::vector<int> s(nn);
  for (unsigned int i=0; i<n; ++i) {
    const IntegerVector &v = x0[i];
    for (int const &j : v) {
      if(j > nn) return false;
      s[j-1] = i;
    }
  }
  {
    std::vector<int> lup(n, -1);
    int j = 0;
    for(int &i : s) {
      if(lup[i] < 0) {lup[i] = j++;}
      i = lup[i];
    }
  }
  for (List const &i : x) {
    if(i.length() != n) return false;
    std::vector<int> sx(nn);
    for(unsigned int j=0; j<n; ++j) {
      const IntegerVector &v = i[j];
      for (int const &k : v) {
        if(k > nn) return false;
        sx[k-1] = j;
      }
    }
    {
      std::vector<int> lup(n, -1);
      int j = 0;
      for(int &i : sx) {
        int &lupp = lup[i];
        if(lupp == -1) {lupp = j; i = j++;
        } else {i = lupp;}
      }
    }
    if(s!=sx) return false;
  }
  return true;
}
")

Dziękujemy @Gregor za wskazówki, które pomogą poprawić odpowiedź!


Nie sądzę, żeby to działało, gdy partycje mają równe rozmiary ,,, ale powinny być szybsze niż moje, gdy partycje o nierównych rozmiarach. Na przykład lst <- list(list(1,c(2,3,4),c(5,6),7), list(c(2,3,4),1,7,c(5,6)), list(1,c(2,3,4),7,c(6,5)), list(7,1,c(3,2,4),c(5,6)))będzie oceniany jakoFALSE
ThomasIsCoding

1
@Gregor Dzięki za wskazówkę do sortowania według min!
GKi

Wygląda świetnie! Zaczekam trochę dłużej, aby zobaczyć, czy jest jakieś szybsze rozwiązanie.
ThomasIsCoding

jakie są rzeczywiste wymiary zestawu danych, abyś mógł znaleźć szybsze rozwiązanie?
chinsoon12

Dodałem testy wydajności, aby zobaczyć skuteczność (zobacz mój nowo edytowany post). Twoje rozwiązanie jest szybsze niż moje, szczególnie dwustopniowe. Chciałbym poczekać, aż pojawi się jakiekolwiek rozwiązanie z większymi ulepszeniami, w przeciwnym razie Twoje zostanie zaakceptowane jako najlepsze. Jeszcze raz dziękuję!
ThomasIsCoding

4

Wydajność:

library(microbenchmark)

microbenchmark(check = 'equal', times=10
  , f_ThomsIsCoding(lst1)
  , f_chinsoon12(lst1)
  , f_GKi_6a(lst1)
  , f_GKi_6b(lst1)
  , f_GKi_6_Rcpp(lst1)
  , f_Rcpp_Hash(lst1))
#Unit: microseconds
#                  expr        min         lq        mean     median         uq        max neval
# f_ThomsIsCoding(lst1) 161187.790 162453.520 167107.5739 167899.471 169441.028 174746.156    10
#    f_chinsoon12(lst1)  64380.792  64938.528  66983.9449  67357.924  68487.438  69201.032    10
#        f_GKi_6a(lst1)   8833.595   9201.744  10377.5844   9407.864  12145.926  14662.022    10
#        f_GKi_6b(lst1)   8815.592   8913.950   9877.4948   9112.924  10941.261  12553.845    10
#    f_GKi_6_Rcpp(lst1)    394.754    426.489    539.1494    439.644    451.375   1327.885    10
#     f_Rcpp_Hash(lst1)    327.665    374.409    499.4080    398.101    495.034   1198.674    10

microbenchmark(check = 'equal', times=10
  , f_ThomsIsCoding(lst2)
  , f_chinsoon12(lst2)
  , f_GKi_6a(lst2)
  , f_GKi_6b(lst2)
  , f_GKi_6_Rcpp(lst2)
  , f_Rcpp_Hash(lst2))
#Unit: microseconds
#                  expr       min        lq        mean      median         uq        max neval
# f_ThomsIsCoding(lst2) 93808.603 99663.651 103358.2039 104676.1600 107124.879 107485.696    10
#    f_chinsoon12(lst2)   131.320   147.192    192.5354    188.1935    205.053    337.062    10
#        f_GKi_6a(lst2)  8630.970  9554.279  10681.9510   9753.2670  11970.377  13489.243    10
#        f_GKi_6b(lst2)    39.736    47.916     61.3929     52.7755     63.026    110.808    10
#    f_GKi_6_Rcpp(lst2)    43.017    51.022     72.8736     76.3465     86.527    116.060    10
#     f_Rcpp_Hash(lst2)     3.667     4.237     20.5887     16.3000     18.031     96.728    10

microbenchmark(check = 'equal', times=10
  , f_ThomsIsCoding(lst3)
  , f_chinsoon12(lst3)
  , f_GKi_6a(lst3)
  , f_GKi_6b(lst3)
  , f_GKi_6_Rcpp(lst3)
  , f_Rcpp_Hash(lst3))
#Unit: microseconds
#                  expr        min         lq        mean      median         uq        max neval
# f_ThomsIsCoding(lst3) 157660.501 166914.782 167067.2512 167204.9065 168055.941 177153.694    10
#    f_chinsoon12(lst3)    139.157    181.019    183.9257    188.0950    198.249    211.860    10
#        f_GKi_6a(lst3)   9484.496   9617.471  10709.3950  10056.1865  11812.037  12830.560    10
#        f_GKi_6b(lst3)     33.583     36.338     47.1577     42.6540     63.469     66.640    10
#    f_GKi_6_Rcpp(lst3)     60.010     60.455     89.4963     94.7220    104.271    121.431    10
#     f_Rcpp_Hash(lst3)      4.404      5.518      9.9811      6.5115     17.396     20.090    10

microbenchmark(check = 'equal', times=10
  , f_ThomsIsCoding(lst4)
  , f_chinsoon12(lst4)
  , f_GKi_6a(lst4)
  , f_GKi_6b(lst4)
  , f_GKi_6_Rcpp(lst4)
  , f_Rcpp_Hash(lst4))
#Unit: milliseconds
#                  expr         min          lq       mean      median          uq        max neval
# f_ThomsIsCoding(lst4) 1874.129146 1937.643431 2012.99077 2002.460746 2134.072981 2187.46886    10
#    f_chinsoon12(lst4)   69.949917   74.393779   80.25362   76.595763   87.116571  100.57917    10
#        f_GKi_6a(lst4)   23.259178   23.328548   27.62690   28.856612   30.675259   32.57509    10
#        f_GKi_6b(lst4)   22.200969   22.326122   24.20769   23.023687   23.619360   31.74266    10
#    f_GKi_6_Rcpp(lst4)    8.062451    8.228526   10.30559    8.363314   13.425531   13.80677    10
#     f_Rcpp_Hash(lst4)    6.551370    6.586025    7.22958    6.724232    6.809745   11.97631    10

Biblioteki:

system.time(install.packages("Rcpp"))
#       User      System verstrichen 
#     27.576       1.147      29.396 

system.time(library(Rcpp))
#       User      System verstrichen 
#      0.070       0.000       0.071 

Funkcje:

system.time({f_ThomsIsCoding <- function(lst) {
  s <- Map(function(v) Map(sort,v),lst)
  length(setdiff(Reduce(union,s),Reduce(intersect,s)))==0
}})
#       User      System verstrichen 
#          0           0           0 

#like GKi's solution to stop early when diff is detected
system.time({f_chinsoon12  <- function(lst) {
    x <- lst[[1L]]
    y <- x[order(lengths(x), sapply(x, min))]
    a <- rep(seq_along(y), lengths(y))[order(unlist(y))]
    for(x in lst[-1L]) {
        y <- x[order(lengths(x), sapply(x, min))]
        a2 <- rep(seq_along(y), lengths(y))[order(unlist(y))]
        if(!identical(a, a2)) {
            return(FALSE)
        }
    }
    TRUE
}})
#       User      System verstrichen 
#          0           0           0 

system.time({f_GKi_6a <- function(lst) {
  all(duplicated(lapply(lst, function(x) {
    y <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
    match(y, unique(y))
  }))[-1])
}})
#      User      System verstrichen 
#          0           0           0 

system.time({f_GKi_6b <- function(lst) {
  x <- lst[[1]]
  s <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
  s <- match(s, unique(s))
  for(i in seq(lst)[-1]) {
    x <- lst[[i]]
    y <- "[<-"(integer(),unlist(x),rep(seq_along(x), lengths(x)))
    y <- match(y, unique(y))
    if(!identical(s, y)) return(FALSE)
  }
  TRUE
}})
#       User      System verstrichen 
#          0           0           0 

system.time({sourceCpp(code = "#include <Rcpp.h>
#include <vector>
using namespace Rcpp;
// [[Rcpp::plugins(cpp11)]]
// [[Rcpp::export]]
bool f_GKi_6_Rcpp(const List &x) {
  const List &x0 = x[0];
  const unsigned int n = x0.length();
  unsigned int nn = 0;
  for (List const &i : x0) {nn += i.length();}
  std::vector<int> s(nn);
  for (unsigned int i=0; i<n; ++i) {
    const IntegerVector &v = x0[i];
    for (int const &j : v) {
      if(j > nn) return false;
      s[j-1] = i;
    }
  }
  {
    std::vector<int> lup(n, -1);
    int j = 0;
    for(int &i : s) {
      if(lup[i] < 0) {lup[i] = j++;}
      i = lup[i];
    }
  }
  for (List const &i : x) {
    if(i.length() != n) return false;
    std::vector<int> sx(nn);
    for(unsigned int j=0; j<n; ++j) {
      const IntegerVector &v = i[j];
      for (int const &k : v) {
        if(k > nn) return false;
        sx[k-1] = j;
      }
    }
    {
      std::vector<int> lup(n, -1);
      int j = 0;
      for(int &i : sx) {
        int &lupp = lup[i];
        if(lupp == -1) {lupp = j; i = j++;
        } else {i = lupp;}
      }
    }
    if(s!=sx) return false;
  }
  return true;
}
")})
#       User      System verstrichen 
#      3.265       0.217       3.481 

system.time({sourceCpp(code = "#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::plugins(cpp11)]]

void getNPrimes(std::vector<double> &logPrimes) {
    const int n = logPrimes.size();
    const int limit = static_cast<int>(2.0 * static_cast<double>(n) * std::log(n));
    std::vector<bool> sieve(limit + 1, true);
    int lastP = 3;
    const int fsqr = std::sqrt(static_cast<double>(limit));

    while (lastP <= fsqr) {
        for (int j = lastP * lastP; j <= limit; j += 2 * lastP)
            sieve[j] = false;
        int ind = 2;
        for (int k = lastP + 2; !sieve[k]; k += 2)
            ind += 2;
        lastP += ind;
    }
    logPrimes[0] = std::log(2.0);
    for (int i = 3, j = 1; i <= limit && j < n; i += 2)
        if (sieve[i])
            logPrimes[j++] = std::log(static_cast<double>(i));
}

// [[Rcpp::export]]
bool f_Rcpp_Hash(List x) {
    List tempLst = x[0];
    const int n = tempLst.length();
    int myMax = 0;
    // Find the max so we know how many primes to generate
    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        const int tempMax = *std::max_element(v.cbegin(), v.cend());
        if (tempMax > myMax)
            myMax = tempMax;
    }
    std::vector<double> logPrimes(myMax + 1, 0.0);
    getNPrimes(logPrimes);
    double sumMax = 0.0;
    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        double mySum = 0.0;
        for (auto j: v)
            mySum += logPrimes[j];
        if (mySum > sumMax)
            sumMax = mySum;
    }
    const uint64_t multiplier = std::numeric_limits<int>::max() / sumMax;
    std::unordered_set<uint64_t> canon;
    canon.reserve(n);
    for (int i = 0; i < n; ++i) {
        IntegerVector v = tempLst[i];
        double mySum = 0.0;
        for (auto j: v)
            mySum += logPrimes[j];
        canon.insert(static_cast<uint64_t>(multiplier * mySum));
    }
    const auto myEnd = canon.end();
    for (auto it = x.begin() + 1; it != x.end(); ++it) {
        List tempLst = *it;
        if (tempLst.length() != n)
            return false;
        for (int j = 0; j < n; ++j) {
            IntegerVector v = tempLst[j];
            double mySum = 0.0;
            for (auto k: v)
                mySum += logPrimes[k];
            const uint64_t key = static_cast<uint64_t>(multiplier * mySum);
            if (canon.find(key) == myEnd)
                return false;
        }
    }
    return true;
}
")})
#       User      System verstrichen 
#      3.507       0.155       3.662 

Dane:

lst1 <- list(list(1,c(2,3,4),c(5,6)) #TRUE
           , list(c(2,3,4),1,c(5,6))
           , list(1,c(2,3,4),c(6,5)))
lst2 <- list(list(c(2,3,4),c(1,5,6)) #FALSE
           , list(c(2,3,6),c(1,5,4))
           , list(c(2,3,4),c(1,5,6)))
lst3 <- list(list(1,c(2,3,4),c(5,6)) #FALSE
           , list(c(2,3,4),1,c(5,6))
           , list(1,c(2,3,5),c(6,4)))
set.seed(7)
N  <- 1e3
lst1 <- lst1[sample(seq(lst1), N, TRUE)]
lst2 <- lst2[sample(seq(lst2), N, TRUE)]
lst3 <- lst3[sample(seq(lst3), N, TRUE)]
N <- 1000
M <- 500
l <- unname(split(1:N,findInterval(1:N,sort(sample(1:N,N/10)),left.open = T)))
lst4 <- lapply(lapply(1:M, 
                     function(k) lapply(l, 
                                        function(v) v[sample(seq_along(v),length(v))])), function(x) x[sample(seq_along(x),length(x))])

Dziękuję Ci bardzo! Właśnie zauważyłem, że popełniłem literówkę w kodzie, co powinno być length(setdiff(Reduce(union,s),Reduce(intersect,s)))==0 , przepraszam za mój błąd ....
ThomasIsCoding,

@ThomasIsCoding Odpowiedź została zaktualizowana. Ale stworzyłem go jako Wiki, więc każdy może aktualizować i dodawać nowe rozwiązania oraz powtarzać to nie wszędzie.
GKi,

Dziękuję za Twój wysiłek! Myślę, że teraz moje rozwiązanie daje takie same wyniki jak twoje po korekcie, ale wolniej niż twoje :)
ThomasIsCoding

Niesamowite! Znacząco poprawiasz wydajność! Akceptuję twoje rozwiązanie!
ThomasIsCoding

@ chinsoon12 dziękuję bardzo za przypomnienie! Teraz zmieniłem go na inny do
akceptacji

3

Mam nadzieję, że szczęście po raz drugi

f <- function(lst) {
    s <- lapply(lst, function(x) {
        y <- x[order(lengths(x), sapply(x, min))]
        rep(seq_along(y), lengths(y))[order(unlist(y))]
    })
    length(unique(s))==1L
}

przypadki testowe:

# should return `TRUE`
lst1 <- list(list(1,c(2,3,4),c(5,6)),
    list(c(2,3,4),1,c(5,6)),
    list(1,c(2,3,4),c(6,5)))

# should return `TRUE`
lst2 <- list(list(1:2, 3:4), list(3:4, 1:2))

# should return `FALSE`
lst3 <- list(list(1,c(2,3,4),c(5,6)), list(c(2,3,4),1,c(5,6)), list(1,c(2,3,5),c(6,4)))

# should return `FALSE`
lst4 <- list(list(c(2,3,4),c(1,5,6)), list(c(2,3,6),c(1,5,4)), list(c(2,3,4),c(1,5,6)))

lst5 <- list(list(1,c(2,3,4),c(5,6)) #TRUE
    , list(c(2,3,4),1,c(5,6))
    , list(1,c(2,3,4),c(6,5)))
lst6 <- list(list(c(2,3,4),c(1,5,6)) #FALSE
    , list(c(2,3,6),c(1,5,4))
    , list(c(2,3,4),c(1,5,6)))
lst7 <- list(list(1,c(2,3,4),c(5,6)) #FALSE
    , list(c(2,3,4),1,c(5,6))
    , list(1,c(2,3,5),c(6,4)))

czeki:

f(lst1)
#[1] TRUE
f(lst2)
#[1] TRUE
f(lst3)
#[1] FALSE
f(lst4)
#[1] FALSE
f(lst5)
#[1] TRUE
f(lst6)
#[1] FALSE
f(lst7)
#[1] FALSE

kod czasowy:

library(microbenchmark)
set.seed(0L)
N <- 1000
M <- 100
l <- unname(split(1:N,findInterval(1:N,sort(sample(1:N,N/10)),left.open = T)))
lst <- lapply(lapply(1:M,
    function(k) lapply(l,
        function(v) v[sample(seq_along(v),length(v))])), function(x) x[sample(seq_along(x),length(x))])

f_ThomsIsCoding <- function(lst) {
    s <- Map(function(v) Map(sort,v),lst)
    length(setdiff(Reduce(union,s),Reduce(intersect,s)))==0
}

f_GKi_1 <- function(lst) {
    all(duplicated(lapply(lst, function(x) lapply(x, sort)[order(unlist(lapply(x, min)))]))[-1])
}

f_GKi_2 <- function(lst) {
    s <- lapply(lst, function(x) lapply(x, sort))
    all(duplicated(lapply(s, function(x) x[order(unlist(lapply(x, "[", 1)))]))[-1])
}


f <- function(lst) {
    s <- lapply(lst, function(x) {
        y <- x[order(lengths(x), sapply(x, min))]
        rep(seq_along(y), lengths(y))[order(unlist(y))]
    })
    length(unique(s))==1L
}

microbenchmark(times=3L,
    f_ThomsIsCoding(lst),
    f_GKi_1(lst),
    f_GKi_2(lst),
    f(lst)
)

czasy:

Unit: milliseconds
                 expr       min        lq      mean    median        uq      max neval
 f_ThomsIsCoding(lst) 333.77313 334.61662 348.37474 335.46010 355.67555 375.8910     3
         f_GKi_1(lst) 324.12827 324.66580 326.33016 325.20332 327.43111 329.6589     3
         f_GKi_2(lst) 315.73533 316.05770 333.35910 316.38007 342.17099 367.9619     3
               f(lst)  12.42986  14.08256  15.74231  15.73526  17.39853  19.0618     3

Tak, tym razem działa dobrze
ThomasIsCoding
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.