Jak rozebrać (rozbić) kolumnę w DataFrame pandy?


121

Mam następujący DataFrame, w którym jedna z kolumn jest obiektem (komórka typu listy):

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
df
Out[458]: 
   A       B
0  1  [1, 2]
1  2  [1, 2]

Oczekiwany wynik to:

   A  B
0  1  1
1  1  2
3  2  1
4  2  2

Co mam zrobić, żeby to osiągnąć?


Powiązane pytanie

pandy: gdy zawartość komórki jest listą, utwórz wiersz dla każdego elementu na liście

Dobre pytanie i odpowiedź, ale obsługuj tylko jedną kolumnę z listą (w mojej odpowiedzi funkcja samoobrony będzie działać dla wielu kolumn, również akceptowana odpowiedź to użycie najbardziej czasochłonnej apply, co nie jest zalecane, sprawdź więcej informacji Kiedy powinienem kiedykolwiek chcieć używać pand Apply () w moim kodzie? )


5
Powiązane, unnesting stringi: stackoverflow.com/q/48197234/4909087
cs95

5
Kilka powiązanych postów: tutaj , tutaj , tutaj , tutaj , ...
Cleb

Odpowiedzi:


191

Wiem, że objectkolumny typeutrudniają konwersję danych za pomocą pandasfunkcji. Kiedy otrzymałem takie dane, pierwszą rzeczą, która przyszła mi do głowy, było „spłaszczenie” lub odkształcenie kolumn.

Używam pandasi pythonfunkcji dla tego typu pytań. Jeśli martwisz się o szybkość powyższych rozwiązań, sprawdź odpowiedź użytkownika3483203 , ponieważ używa numpyi przez większość czasu numpyjest szybsza. Polecam Cpythoni numbajeśli liczy się szybkość.


Metoda 0 [pandy> = 0,25]
Zaczynając od pand 0,25 , jeśli chcesz rozbić tylko jedną kolumnę, możesz użyć pandas.DataFrame.explodefunkcji:

df.explode('B')

       A  B
    0  1  1
    1  1  2
    0  2  1
    1  2  2

Biorąc pod uwagę ramkę danych z pustą listlub NaNw kolumnie. Pusta lista nie spowoduje problemu, ale NaNwolę należy wypełnićlist

df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [[1, 2], [1, 2], [], np.nan]})
df.B = df.B.fillna({i: [] for i in df.index})  # replace NaN with []
df.explode('B')

   A    B
0  1    1
0  1    2
1  2    1
1  2    2
2  3  NaN
3  4  NaN

Metoda 1
apply + pd.Series (łatwa do zrozumienia, ale pod względem wydajności nie jest zalecana).

df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Out[463]: 
   A  B
0  1  1
1  1  2
0  2  1
1  2  2

Metoda 2
Używając repeatz DataFramekonstruktorem, ponownie utwórz ramkę danych (dobra pod względem wydajności, niezbyt dobra w wielu kolumnach)

df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
df
Out[465]: 
   A  B
0  1  1
0  1  2
1  2  1
1  2  2


Na przykład metoda 2.1 oprócz A mamy A.1 ..... An Jeśli nadal używamy powyższej metody ( Metoda 2 ), trudno jest nam odtworzyć kolumny jedna po drugiej.

Rozwiązanie: joinalbo mergez indexpo „unnest” pojedynczych kolumn

s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len()))
s.join(df.drop('B',1),how='left')
Out[477]: 
   B  A
0  1  1
0  2  1
1  1  2
1  2  2

Jeśli chcesz, aby kolejność kolumn była dokładnie taka sama jak poprzednio, dodaj reindexna końcu.

s.join(df.drop('B',1),how='left').reindex(columns=df.columns)

Metoda 3:
Odtwórz pliklist

pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
Out[488]: 
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

Jeśli więcej niż dwie kolumny, użyj

s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y])
s.merge(df,left_on=0,right_index=True)
Out[491]: 
   0  1  A       B
0  0  1  1  [1, 2]
1  0  2  1  [1, 2]
2  1  1  2  [1, 2]
3  1  2  2  [1, 2]

Metoda 4
przy użyciu reindex lubloc

df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Out[554]: 
   A  B
0  1  1
0  1  2
1  2  1
1  2  2

#df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values))

Metoda 5,
gdy lista zawiera tylko unikalne wartości:

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]]})
from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Out[574]: 
   B  A
0  1  1
1  2  1
2  3  2
3  4  2

Metoda 6
stosując numpyo wysokiej wydajności:

newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0],columns=df.columns)
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

Metoda 7
wykorzystująca funkcję podstawową itertools cyclei chain: Czyste rozwiązanie w Pythonie dla zabawy

from itertools import cycle,chain
l=df.values.tolist()
l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
   A  B
0  1  1
1  1  2
2  2  1
3  2  2

Uogólnianie na wiele kolumn

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]],'C':[[1,2],[3,4]]})
df
Out[592]: 
   A       B       C
0  1  [1, 2]  [1, 2]
1  2  [3, 4]  [3, 4]

Funkcja samoobrony:

def unnesting(df, explode):
    idx = df.index.repeat(df[explode[0]].str.len())
    df1 = pd.concat([
        pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
    df1.index = idx

    return df1.join(df.drop(explode, 1), how='left')

        
unnesting(df,['B','C'])
Out[609]: 
   B  C  A
0  1  1  1
0  2  2  1
1  3  3  2
1  4  4  2

Unnesting kolumnowy

Cała powyższa metoda mówi o pionowym rozebraniu i eksplozji.Jeśli potrzebujesz rozłożyć listę w poziomie , Sprawdź pd.DataFramekonstruktorem

df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
Out[33]: 
   A       B       C  B_0  B_1
0  1  [1, 2]  [1, 2]    1    2
1  2  [3, 4]  [3, 4]    3    4

Zaktualizowana funkcja

def unnesting(df, explode, axis):
    if axis==1:
        idx = df.index.repeat(df[explode[0]].str.len())
        df1 = pd.concat([
            pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
        df1.index = idx

        return df1.join(df.drop(explode, 1), how='left')
    else :
        df1 = pd.concat([
                         pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
        return df1.join(df.drop(explode, 1), how='left')

Wyjście testowe

unnesting(df, ['B','C'], axis=0)
Out[36]: 
   B0  B1  C0  C1  A
0   1   2   1   2  1
1   3   4   3   4  2

43

opcja 1

Jeśli wszystkie listy podrzędne w drugiej kolumnie mają tę samą długość, numpywydajną opcją może być tutaj:

vals = np.array(df.B.values.tolist())    
a = np.repeat(df.A, vals.shape[1])

pd.DataFrame(np.column_stack((a, vals.ravel())), columns=df.columns)

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

Opcja 2

Jeśli podlisty mają różną długość, potrzebny jest dodatkowy krok:

vals = df.B.values.tolist()
rs = [len(r) for r in vals]    
a = np.repeat(df.A, rs)

pd.DataFrame(np.column_stack((a, np.concatenate(vals))), columns=df.columns)

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

Opcja 3

Zrobiłem próbę uogólnienia tego, aby spłaszczyć Nkolumny i Mkolumny kafelkowe , później popracuję nad poprawieniem wydajności:

df = pd.DataFrame({'A': [1,2,3], 'B': [[1,2], [1,2,3], [1]],
                   'C': [[1,2,3], [1,2], [1,2]], 'D': ['A', 'B', 'C']})

   A          B          C  D
0  1     [1, 2]  [1, 2, 3]  A
1  2  [1, 2, 3]     [1, 2]  B
2  3        [1]     [1, 2]  C

def unnest(df, tile, explode):
    vals = df[explode].sum(1)
    rs = [len(r) for r in vals]
    a = np.repeat(df[tile].values, rs, axis=0)
    b = np.concatenate(vals.values)
    d = np.column_stack((a, b))
    return pd.DataFrame(d, columns = tile +  ['_'.join(explode)])

unnest(df, ['A', 'D'], ['B', 'C'])

    A  D B_C
0   1  A   1
1   1  A   2
2   1  A   1
3   1  A   2
4   1  A   3
5   2  B   1
6   2  B   2
7   2  B   3
8   2  B   1
9   2  B   2
10  3  C   1
11  3  C   1
12  3  C   2

Funkcje

def wen1(df):
    return df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0: 'B'})

def wen2(df):
    return pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})

def wen3(df):
    s = pd.DataFrame({'B': np.concatenate(df.B.values)}, index=df.index.repeat(df.B.str.len()))
    return s.join(df.drop('B', 1), how='left')

def wen4(df):
    return pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)

def chris1(df):
    vals = np.array(df.B.values.tolist())
    a = np.repeat(df.A, vals.shape[1])
    return pd.DataFrame(np.column_stack((a, vals.ravel())), columns=df.columns)

def chris2(df):
    vals = df.B.values.tolist()
    rs = [len(r) for r in vals]
    a = np.repeat(df.A.values, rs)
    return pd.DataFrame(np.column_stack((a, np.concatenate(vals))), columns=df.columns)

Czasy

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit

res = pd.DataFrame(
       index=['wen1', 'wen2', 'wen3', 'wen4', 'chris1', 'chris2'],
       columns=[10, 50, 100, 500, 1000, 5000, 10000],
       dtype=float
)

for f in res.index:
    for c in res.columns:
        df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
        df = pd.concat([df]*c)
        stmt = '{}(df)'.format(f)
        setp = 'from __main__ import df, {}'.format(f)
        res.at[f, c] = timeit(stmt, setp, number=50)

ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")

Występ

wprowadź opis obrazu tutaj


3
Ciekawe, byłoby miło poznać porównanie z nową df.explodemetodą.
Paul Rougieux


9

Jedną z alternatyw jest zastosowanie przepisu siatki mesh na rzędach kolumn, aby odłączyć:

import numpy as np
import pandas as pd


def unnest(frame, explode):
    def mesh(values):
        return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))

    data = np.vstack(mesh(row) for row in frame[explode].values)
    return pd.DataFrame(data=data, columns=explode)


df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B']))  # base
print()

df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C']))  # multiple columns
print()

df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
                   'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})

print(unnest(df, ['A', 'B']))  # uneven length lists
print()
print(unnest(df, ['D', 'B']))  # different types
print()

Wynik

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

   A  B  C
0  1  1  1
1  1  2  1
2  1  1  2
3  1  2  2
4  2  3  3
5  2  4  3
6  2  3  4
7  2  4  4

   A  B
0  1  1
1  1  2
2  2  1
3  2  2
4  2  3
5  3  1

   D  B
0  A  1
1  A  2
2  B  1
3  B  2
4  B  3
5  C  1

3

Moje 5 centów:

df[['B', 'B2']] = pd.DataFrame(df['B'].values.tolist())

df[['A', 'B']].append(df[['A', 'B2']].rename(columns={'B2': 'B'}),
                      ignore_index=True)

i kolejny 5

df[['B1', 'B2']] = pd.DataFrame([*df['B']]) # if values.tolist() is too boring

(pd.wide_to_long(df.drop('B', 1), 'B', 'A', '')
 .reset_index(level=1, drop=True)
 .reset_index())

oba skutkują tym samym

   A  B
0  1  1
1  2  1
2  1  2
3  2  2

3

Konfiguracja problemu

Załóżmy, że istnieje wiele kolumn z obiektami o różnej długości

df = pd.DataFrame({
    'A': [1, 2],
    'B': [[1, 2], [3, 4]],
    'C': [[1, 2], [3, 4, 5]]
})

df

   A       B          C
0  1  [1, 2]     [1, 2]
1  2  [3, 4]  [3, 4, 5]

Gdy długości są takie same, łatwo jest założyć, że poszczególne elementy pokrywają się i powinny być ze sobą „zapięte”.

   A       B          C
0  1  [1, 2]     [1, 2]  # Typical to assume these should be zipped [(1, 1), (2, 2)]
1  2  [3, 4]  [3, 4, 5]

Jednak założenie to staje się kwestionowane, gdy widzimy obiekty o różnej długości, czy powinniśmy "zipować", jeśli tak, to jak sobie poradzimy z nadmiarem jednego z obiektów. A może chcemy iloczynu wszystkich obiektów. To szybko się rozwinie, ale może być tym, czego chcemy.

   A       B          C
0  1  [1, 2]     [1, 2]
1  2  [3, 4]  [3, 4, 5]  # is this [(3, 3), (4, 4), (None, 5)]?

LUB

   A       B          C
0  1  [1, 2]     [1, 2]
1  2  [3, 4]  [3, 4, 5]  # is this [(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)]

Funkcja

Ta funkcja z wdziękiem obsługuje parametr ziplub productopiera się na nim i przyjmuje zipzgodnie z długością najdłuższego obiektu zzip_longest

from itertools import zip_longest, product

def xplode(df, explode, zipped=True):
    method = zip_longest if zipped else product

    rest = {*df} - {*explode}

    zipped = zip(zip(*map(df.get, rest)), zip(*map(df.get, explode)))
    tups = [tup + exploded
     for tup, pre in zipped
     for exploded in method(*pre)]

    return pd.DataFrame(tups, columns=[*rest, *explode])[[*df]]

Zapinane

xplode(df, ['B', 'C'])

   A    B  C
0  1  1.0  1
1  1  2.0  2
2  2  3.0  3
3  2  4.0  4
4  2  NaN  5

Produkt

xplode(df, ['B', 'C'], zipped=False)

   A  B  C
0  1  1  1
1  1  1  2
2  1  2  1
3  1  2  2
4  2  3  3
5  2  3  4
6  2  3  5
7  2  4  3
8  2  4  4
9  2  4  5

Nowa konfiguracja

Trochę inny przykład

df = pd.DataFrame({
    'A': [1, 2],
    'B': [[1, 2], [3, 4]],
    'C': 'C',
    'D': [[1, 2], [3, 4, 5]],
    'E': [('X', 'Y', 'Z'), ('W',)]
})

df

   A       B  C          D          E
0  1  [1, 2]  C     [1, 2]  (X, Y, Z)
1  2  [3, 4]  C  [3, 4, 5]       (W,)

Zapinane

xplode(df, ['B', 'D', 'E'])

   A    B  C    D     E
0  1  1.0  C  1.0     X
1  1  2.0  C  2.0     Y
2  1  NaN  C  NaN     Z
3  2  3.0  C  3.0     W
4  2  4.0  C  4.0  None
5  2  NaN  C  5.0  None

Produkt

xplode(df, ['B', 'D', 'E'], zipped=False)

    A  B  C  D  E
0   1  1  C  1  X
1   1  1  C  1  Y
2   1  1  C  1  Z
3   1  1  C  2  X
4   1  1  C  2  Y
5   1  1  C  2  Z
6   1  2  C  1  X
7   1  2  C  1  Y
8   1  2  C  1  Z
9   1  2  C  2  X
10  1  2  C  2  Y
11  1  2  C  2  Z
12  2  3  C  3  W
13  2  3  C  4  W
14  2  3  C  5  W
15  2  4  C  3  W
16  2  4  C  4  W
17  2  4  C  5  W

2

Ponieważ zwykle długość podlist jest różna, a łączenie / scalanie jest znacznie bardziej kosztowne obliczeniowo. Ponownie przetestowałem tę metodę dla podlist o innej długości i bardziej normalnych kolumn.

MultiIndex powinien być również łatwiejszym sposobem pisania i ma prawie takie same wyniki jak numpy sposób.

O dziwo, w moim zrozumieniu implementacji sposób ma najlepszą wydajność.

def stack(df):
    return df.set_index(['A', 'C']).B.apply(pd.Series).stack()


def comprehension(df):
    return pd.DataFrame([x + [z] for x, y in zip(df[['A', 'C']].values.tolist(), df.B) for z in y])


def multiindex(df):
    return pd.DataFrame(np.concatenate(df.B.values), index=df.set_index(['A', 'C']).index.repeat(df.B.str.len()))


def array(df):
    return pd.DataFrame(
        np.column_stack((
            np.repeat(df[['A', 'C']].values, df.B.str.len(), axis=0),
            np.concatenate(df.B.values)
        ))
    )


import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit

res = pd.DataFrame(
    index=[
        'stack',
        'comprehension',
        'multiindex',
        'array',
    ],
    columns=[1000, 2000, 5000, 10000, 20000, 50000],
    dtype=float
)

for f in res.index:
    for c in res.columns:
        df = pd.DataFrame({'A': list('abc'), 'C': list('def'), 'B': [['g', 'h', 'i'], ['j', 'k'], ['l']]})
        df = pd.concat([df] * c)
        stmt = '{}(df)'.format(f)
        setp = 'from __main__ import df, {}'.format(f)
        res.at[f, c] = timeit(stmt, setp, number=20)

ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")

Występ

Względny czas każdej metody


2

Uogólniłem nieco problem, aby można go było zastosować do większej liczby kolumn.

Podsumowanie tego, co robi moje rozwiązanie:

In[74]: df
Out[74]: 
    A   B             C             columnD
0  A1  B1  [C1.1, C1.2]                D1
1  A2  B2  [C2.1, C2.2]  [D2.1, D2.2, D2.3]
2  A3  B3            C3        [D3.1, D3.2]

In[75]: dfListExplode(df,['C','columnD'])
Out[75]: 
    A   B     C columnD
0  A1  B1  C1.1    D1
1  A1  B1  C1.2    D1
2  A2  B2  C2.1    D2.1
3  A2  B2  C2.1    D2.2
4  A2  B2  C2.1    D2.3
5  A2  B2  C2.2    D2.1
6  A2  B2  C2.2    D2.2
7  A2  B2  C2.2    D2.3
8  A3  B3    C3    D3.1
9  A3  B3    C3    D3.2

Kompletny przykład:

Właściwa eksplozja odbywa się w 3 liniach. Reszta to kosmetyki (wielokolumnowa eksplozja, obsługa ciągów znaków zamiast list w kolumnie eksplozji, ...).

import pandas as pd
import numpy as np

df=pd.DataFrame( {'A': ['A1','A2','A3'],
                  'B': ['B1','B2','B3'],
                  'C': [ ['C1.1','C1.2'],['C2.1','C2.2'],'C3'],
                  'columnD': [ 'D1',['D2.1','D2.2', 'D2.3'],['D3.1','D3.2']],
                  })
print('df',df, sep='\n')

def dfListExplode(df, explodeKeys):
    if not isinstance(explodeKeys, list):
        explodeKeys=[explodeKeys]
    # recursive handling of explodeKeys
    if len(explodeKeys)==0:
        return df
    elif len(explodeKeys)==1:
        explodeKey=explodeKeys[0]
    else:
        return dfListExplode( dfListExplode(df, explodeKeys[:1]), explodeKeys[1:])
    # perform explosion/unnesting for key: explodeKey
    dfPrep=df[explodeKey].apply(lambda x: x if isinstance(x,list) else [x]) #casts all elements to a list
    dfIndExpl=pd.DataFrame([[x] + [z] for x, y in zip(dfPrep.index,dfPrep.values) for z in y ], columns=['explodedIndex',explodeKey])
    dfMerged=dfIndExpl.merge(df.drop(explodeKey, axis=1), left_on='explodedIndex', right_index=True)
    dfReind=dfMerged.reindex(columns=list(df))
    return dfReind

dfExpl=dfListExplode(df,['C','columnD'])
print('dfExpl',dfExpl, sep='\n')

Kredyty dla za odpowiedź WeNYoBena


1

Coś całkiem niezalecane (przynajmniej działa w tym przypadku):

df=pd.concat([df]*2).sort_index()
it=iter(df['B'].tolist()[0]+df['B'].tolist()[0])
df['B']=df['B'].apply(lambda x:next(it))

concat+ sort_index+ iter+ apply+next .

Teraz:

print(df)

Jest:

   A  B
0  1  1
0  1  2
1  2  1
1  2  2

Jeśli zależy Ci na indeksie:

df=df.reset_index(drop=True)

Teraz:

print(df)

Jest:

   A  B
0  1  1
1  1  2
2  2  1
3  2  2

1
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})

pd.concat([df['A'], pd.DataFrame(df['B'].values.tolist())], axis = 1)\
  .melt(id_vars = 'A', value_name = 'B')\
  .dropna()\
  .drop('variable', axis = 1)

    A   B
0   1   1
1   2   1
2   1   2
3   2   2

Jakieś opinie na temat tej metody, o których myślałem? czy też wykonywanie operacji concat i melt jest uważane za zbyt „kosztowne”?


1

Mam inny dobry sposób na rozwiązanie tego problemu, gdy masz więcej niż jedną kolumnę do wybuchu.

df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]], 'C':[[1,2,3],[1,2,3]]})

print(df)
   A       B          C
0  1  [1, 2]  [1, 2, 3]
1  2  [1, 2]  [1, 2, 3]

Chcę wysadzić kolumny B i C. Najpierw eksploduję B, drugie C. Następnie upuszczam B i C z oryginalnego df. Następnie zrobię przyłączenie indeksu do 3 dfs.

explode_b = df.explode('B')['B']
explode_c = df.explode('C')['C']
df = df.drop(['B', 'C'], axis=1)
df = df.join([explode_b, explode_c])

0
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})

out = pd.concat([df.loc[:,'A'],(df.B.apply(pd.Series))], axis=1, sort=False)

out = out.set_index('A').stack().droplevel(level=1).reset_index().rename(columns={0:"B"})

       A    B
   0    1   1
   1    1   2
   2    2   1
   3    2   2
  • możesz to zaimplementować jako jedną wkładkę, jeśli nie chcesz tworzyć obiektu pośredniego

0
# Here's the answer to the related question in:
# https://stackoverflow.com/q/56708671/11426125

# initial dataframe
df12=pd.DataFrame({'Date':['2007-12-03','2008-09-07'],'names':
[['Peter','Alex'],['Donald','Stan']]})

# convert dataframe to array for indexing list values (names)
a = np.array(df12.values)  

# create a new, dataframe with dimensions for unnested
b = np.ndarray(shape = (4,2))
df2 = pd.DataFrame(b, columns = ["Date", "names"], dtype = str)

# implement loops to assign date/name values as required
i = range(len(a[0]))
j = range(len(a[0]))
for x in i:
    for y in j:
        df2.iat[2*x+y, 0] = a[x][0]
        df2.iat[2*x+y, 1] = a[x][1][y]

# set Date column as Index
df2.Date=pd.to_datetime(df2.Date)
df2.index=df2.Date
df2.drop('Date',axis=1,inplace =True)

0

W moim przypadku z więcej niż jedną kolumną do rozbicia i ze zmiennymi długościami dla tablic, które muszą być niezagospodarowane.

Skończyło się na explodedwukrotnym zastosowaniu nowej funkcji pandy 0.25 , a następnie usunięciu wygenerowanych duplikatów i robi swoje!

df = df.explode('A')
df = df.explode('B')
df = df.drop_duplicates()
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.