Oto nieco bardziej złożona wersja połączonej klasy listy, z interfejsem podobnym do typów sekwencji Pythona (tj. Obsługuje indeksowanie, dzielenie, konkatenację z dowolnymi sekwencjami itp.). Powinien mieć poprzedzający O (1), nie kopiuje danych, chyba że jest to konieczne i może być używany dość zamiennie z krotkami.
Nie będzie tak oszczędny pod względem miejsca ani czasu jak komórki przeciw lisp, ponieważ klasy Pythona mają oczywiście nieco większą wagę (możesz to nieco poprawić za pomocą „__slots__ = '_head','_tail'
”, aby zmniejszyć zużycie pamięci). Będzie jednak miał pożądaną dużą charakterystykę wydajności O.
Przykład użycia:
>>> l = LinkedList([1,2,3,4])
>>> l
LinkedList([1, 2, 3, 4])
>>> l.head, l.tail
(1, LinkedList([2, 3, 4]))
# Prepending is O(1) and can be done with:
LinkedList.cons(0, l)
LinkedList([0, 1, 2, 3, 4])
# Or prepending arbitrary sequences (Still no copy of l performed):
[-1,0] + l
LinkedList([-1, 0, 1, 2, 3, 4])
# Normal list indexing and slice operations can be performed.
# Again, no copy is made unless needed.
>>> l[1], l[-1], l[2:]
(2, 4, LinkedList([3, 4]))
>>> assert l[2:] is l.next.next
# For cases where the slice stops before the end, or uses a
# non-contiguous range, we do need to create a copy. However
# this should be transparent to the user.
>>> LinkedList(range(100))[-10::2]
LinkedList([90, 92, 94, 96, 98])
Realizacja:
import itertools
class LinkedList(object):
"""Immutable linked list class."""
def __new__(cls, l=[]):
if isinstance(l, LinkedList): return l # Immutable, so no copy needed.
i = iter(l)
try:
head = i.next()
except StopIteration:
return cls.EmptyList # Return empty list singleton.
tail = LinkedList(i)
obj = super(LinkedList, cls).__new__(cls)
obj._head = head
obj._tail = tail
return obj
@classmethod
def cons(cls, head, tail):
ll = cls([head])
if not isinstance(tail, cls):
tail = cls(tail)
ll._tail = tail
return ll
# head and tail are not modifiable
@property
def head(self): return self._head
@property
def tail(self): return self._tail
def __nonzero__(self): return True
def __len__(self):
return sum(1 for _ in self)
def __add__(self, other):
other = LinkedList(other)
if not self: return other # () + l = l
start=l = LinkedList(iter(self)) # Create copy, as we'll mutate
while l:
if not l._tail: # Last element?
l._tail = other
break
l = l._tail
return start
def __radd__(self, other):
return LinkedList(other) + self
def __iter__(self):
x=self
while x:
yield x.head
x=x.tail
def __getitem__(self, idx):
"""Get item at specified index"""
if isinstance(idx, slice):
# Special case: Avoid constructing a new list, or performing O(n) length
# calculation for slices like l[3:]. Since we're immutable, just return
# the appropriate node. This becomes O(start) rather than O(n).
# We can't do this for more complicated slices however (eg [l:4]
start = idx.start or 0
if (start >= 0) and (idx.stop is None) and (idx.step is None or idx.step == 1):
no_copy_needed=True
else:
length = len(self) # Need to calc length.
start, stop, step = idx.indices(length)
no_copy_needed = (stop == length) and (step == 1)
if no_copy_needed:
l = self
for i in range(start):
if not l: break # End of list.
l=l.tail
return l
else:
# We need to construct a new list.
if step < 1: # Need to instantiate list to deal with -ve step
return LinkedList(list(self)[start:stop:step])
else:
return LinkedList(itertools.islice(iter(self), start, stop, step))
else:
# Non-slice index.
if idx < 0: idx = len(self)+idx
if not self: raise IndexError("list index out of range")
if idx == 0: return self.head
return self.tail[idx-1]
def __mul__(self, n):
if n <= 0: return Nil
l=self
for i in range(n-1): l += self
return l
def __rmul__(self, n): return self * n
# Ideally we should compute the has ourselves rather than construct
# a temporary tuple as below. I haven't impemented this here
def __hash__(self): return hash(tuple(self))
def __eq__(self, other): return self._cmp(other) == 0
def __ne__(self, other): return not self == other
def __lt__(self, other): return self._cmp(other) < 0
def __gt__(self, other): return self._cmp(other) > 0
def __le__(self, other): return self._cmp(other) <= 0
def __ge__(self, other): return self._cmp(other) >= 0
def _cmp(self, other):
"""Acts as cmp(): -1 for self<other, 0 for equal, 1 for greater"""
if not isinstance(other, LinkedList):
return cmp(LinkedList,type(other)) # Arbitrary ordering.
A, B = iter(self), iter(other)
for a,b in itertools.izip(A,B):
if a<b: return -1
elif a > b: return 1
try:
A.next()
return 1 # a has more items.
except StopIteration: pass
try:
B.next()
return -1 # b has more items.
except StopIteration: pass
return 0 # Lists are equal
def __repr__(self):
return "LinkedList([%s])" % ', '.join(map(repr,self))
class EmptyList(LinkedList):
"""A singleton representing an empty list."""
def __new__(cls):
return object.__new__(cls)
def __iter__(self): return iter([])
def __nonzero__(self): return False
@property
def head(self): raise IndexError("End of list")
@property
def tail(self): raise IndexError("End of list")
# Create EmptyList singleton
LinkedList.EmptyList = EmptyList()
del EmptyList