Jak znaleźć wartość p (istotność) każdego współczynnika?
lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Jak znaleźć wartość p (istotność) każdego współczynnika?
lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
Odpowiedzi:
To trochę przesada, ale dajmy sobie szansę. Najpierw użyjmy statsmodel, aby dowiedzieć się, jakie powinny być wartości p
import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
i otrzymujemy
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.518
Model: OLS Adj. R-squared: 0.507
Method: Least Squares F-statistic: 46.27
Date: Wed, 08 Mar 2017 Prob (F-statistic): 3.83e-62
Time: 10:08:24 Log-Likelihood: -2386.0
No. Observations: 442 AIC: 4794.
Df Residuals: 431 BIC: 4839.
Df Model: 10
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 152.1335 2.576 59.061 0.000 147.071 157.196
x1 -10.0122 59.749 -0.168 0.867 -127.448 107.424
x2 -239.8191 61.222 -3.917 0.000 -360.151 -119.488
x3 519.8398 66.534 7.813 0.000 389.069 650.610
x4 324.3904 65.422 4.958 0.000 195.805 452.976
x5 -792.1842 416.684 -1.901 0.058 -1611.169 26.801
x6 476.7458 339.035 1.406 0.160 -189.621 1143.113
x7 101.0446 212.533 0.475 0.635 -316.685 518.774
x8 177.0642 161.476 1.097 0.273 -140.313 494.442
x9 751.2793 171.902 4.370 0.000 413.409 1089.150
x10 67.6254 65.984 1.025 0.306 -62.065 197.316
==============================================================================
Omnibus: 1.506 Durbin-Watson: 2.029
Prob(Omnibus): 0.471 Jarque-Bera (JB): 1.404
Skew: 0.017 Prob(JB): 0.496
Kurtosis: 2.726 Cond. No. 227.
==============================================================================
Ok, odtwórzmy to. To trochę przesada, ponieważ prawie odtwarzamy analizę regresji liniowej za pomocą algebry macierzy. Ale co do cholery.
lm = LinearRegression()
lm.fit(X,y)
params = np.append(lm.intercept_,lm.coef_)
predictions = lm.predict(X)
newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y-predictions)**2))/(len(newX)-len(newX.columns))
# Note if you don't want to use a DataFrame replace the two lines above with
# newX = np.append(np.ones((len(X),1)), X, axis=1)
# MSE = (sum((y-predictions)**2))/(len(newX)-len(newX[0]))
var_b = MSE*(np.linalg.inv(np.dot(newX.T,newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params/ sd_b
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX[0])))) for i in ts_b]
sd_b = np.round(sd_b,3)
ts_b = np.round(ts_b,3)
p_values = np.round(p_values,3)
params = np.round(params,4)
myDF3 = pd.DataFrame()
myDF3["Coefficients"],myDF3["Standard Errors"],myDF3["t values"],myDF3["Probabilities"] = [params,sd_b,ts_b,p_values]
print(myDF3)
I to nam daje.
Coefficients Standard Errors t values Probabilities
0 152.1335 2.576 59.061 0.000
1 -10.0122 59.749 -0.168 0.867
2 -239.8191 61.222 -3.917 0.000
3 519.8398 66.534 7.813 0.000
4 324.3904 65.422 4.958 0.000
5 -792.1842 416.684 -1.901 0.058
6 476.7458 339.035 1.406 0.160
7 101.0446 212.533 0.475 0.635
8 177.0642 161.476 1.097 0.273
9 751.2793 171.902 4.370 0.000
10 67.6254 65.984 1.025 0.306
Więc możemy odtworzyć wartości ze statsmodel.
code
np.linalg.inv może czasami zwracać wynik, nawet jeśli macierz jest nieodwracalna. To może być problem.
nan
s. Dla mnie to dlatego, że moje X
były próbką moich danych, więc indeks był wyłączony. Powoduje to błędy podczas dzwonienia pd.DataFrame.join()
. newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X.reset_index(drop=True)))
Regresja liniowa scikit-learn nie oblicza tych informacji, ale możesz łatwo rozszerzyć klasę, aby to zrobić:
from sklearn import linear_model
from scipy import stats
import numpy as np
class LinearRegression(linear_model.LinearRegression):
"""
LinearRegression class after sklearn's, but calculate t-statistics
and p-values for model coefficients (betas).
Additional attributes available after .fit()
are `t` and `p` which are of the shape (y.shape[1], X.shape[1])
which is (n_features, n_coefs)
This class sets the intercept to 0 by default, since usually we include it
in X.
"""
def __init__(self, *args, **kwargs):
if not "fit_intercept" in kwargs:
kwargs['fit_intercept'] = False
super(LinearRegression, self)\
.__init__(*args, **kwargs)
def fit(self, X, y, n_jobs=1):
self = super(LinearRegression, self).fit(X, y, n_jobs)
sse = np.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1])
se = np.array([
np.sqrt(np.diagonal(sse[i] * np.linalg.inv(np.dot(X.T, X))))
for i in range(sse.shape[0])
])
self.t = self.coef_ / se
self.p = 2 * (1 - stats.t.cdf(np.abs(self.t), y.shape[0] - X.shape[1]))
return self
Skradziony stąd .
Powinieneś przyjrzeć się modelom statystyk dla tego rodzaju analizy statystycznej w Pythonie.
EDYCJA: Prawdopodobnie nie jest to właściwy sposób, patrz komentarze
Możesz użyć sklearn.feature_selection.f_regression.
Kod w odpowiedzi elyase https://stackoverflow.com/a/27928411/4240413 w rzeczywistości nie działa. Zauważ, że sse jest skalarem, a następnie próbuje go iterować. Poniższy kod to zmodyfikowana wersja. Nie jest zadziwiająco czysty, ale myślę, że działa mniej więcej.
class LinearRegression(linear_model.LinearRegression):
def __init__(self,*args,**kwargs):
# *args is the list of arguments that might go into the LinearRegression object
# that we don't know about and don't want to have to deal with. Similarly, **kwargs
# is a dictionary of key words and values that might also need to go into the orginal
# LinearRegression object. We put *args and **kwargs so that we don't have to look
# these up and write them down explicitly here. Nice and easy.
if not "fit_intercept" in kwargs:
kwargs['fit_intercept'] = False
super(LinearRegression,self).__init__(*args,**kwargs)
# Adding in t-statistics for the coefficients.
def fit(self,x,y):
# This takes in numpy arrays (not matrices). Also assumes you are leaving out the column
# of constants.
# Not totally sure what 'super' does here and why you redefine self...
self = super(LinearRegression, self).fit(x,y)
n, k = x.shape
yHat = np.matrix(self.predict(x)).T
# Change X and Y into numpy matricies. x also has a column of ones added to it.
x = np.hstack((np.ones((n,1)),np.matrix(x)))
y = np.matrix(y).T
# Degrees of freedom.
df = float(n-k-1)
# Sample variance.
sse = np.sum(np.square(yHat - y),axis=0)
self.sampleVariance = sse/df
# Sample variance for x.
self.sampleVarianceX = x.T*x
# Covariance Matrix = [(s^2)(X'X)^-1]^0.5. (sqrtm = matrix square root. ugly)
self.covarianceMatrix = sc.linalg.sqrtm(self.sampleVariance[0,0]*self.sampleVarianceX.I)
# Standard erros for the difference coefficients: the diagonal elements of the covariance matrix.
self.se = self.covarianceMatrix.diagonal()[1:]
# T statistic for each beta.
self.betasTStat = np.zeros(len(self.se))
for i in xrange(len(self.se)):
self.betasTStat[i] = self.coef_[0,i]/self.se[i]
# P-value for each beta. This is a two sided t-test, since the betas can be
# positive or negative.
self.betasPValue = 1 - t.cdf(abs(self.betasTStat),df)
Łatwym sposobem na pobranie wartości p jest użycie regresji modeli statycznych:
import statsmodels.api as sm
mod = sm.OLS(Y,X)
fii = mod.fit()
p_values = fii.summary2().tables[1]['P>|t|']
Otrzymujesz serię wartości p, którymi możesz manipulować (na przykład wybierz kolejność, którą chcesz zachować, oceniając każdą wartość p):
p_value należy do statystyk f. jeśli chcesz uzyskać wartość, po prostu użyj tych kilku wierszy kodu:
import statsmodels.api as sm
from scipy import stats
diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target
X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
print(est.fit().f_pvalue)
W odpowiedzi @JARH może być błąd w przypadku regresji wielowymiarowej. (Nie mam wystarczającej reputacji, aby komentować).
W następującym wierszu:
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b]
,
wartości t są zgodne z rozkładem stopni chi kwadratlen(newX)-1
zamiast rozkładu stopni chi kwadrat len(newX)-len(newX.columns)-1
.
Więc to powinno być:
p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX.columns)-1))) for i in ts_b]
(Aby uzyskać więcej informacji, patrz wartości t dla regresji OLS )
Możesz użyć scipy dla wartości p. Ten kod pochodzi z dokumentacji Scipy.
>>> from scipy import stats >>> import numpy as np >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
W przypadku jednowierszowego można użyć funkcji pingouin.linear_regression ( zastrzeżenie: jestem twórcą Pingouina ), która działa z regresją jednokierunkową / wielowariantową przy użyciu tablic NumPy lub Pandas DataFrame, np .:
import pingouin as pg
# Using a Pandas DataFrame `df`:
lm = pg.linear_regression(df[['x', 'z']], df['y'])
# Using a NumPy array:
lm = pg.linear_regression(X, y)
Wynikiem jest ramka danych ze współczynnikami beta, błędami standardowymi, wartościami T, wartościami p i przedziałami ufności dla każdego predyktora, a także R ^ 2 i skorygowanym R ^ 2 dopasowania.