Jak określić najdłużej rosnącą podsekwencję za pomocą programowania dynamicznego?


Odpowiedzi:


404

OK, opiszę najpierw najprostsze rozwiązanie, którym jest O (N ^ 2), gdzie N jest rozmiarem kolekcji. Istnieje również rozwiązanie O (N log N), które również opiszę. Zajrzyj tutaj w dziale Wydajne algorytmy.

Zakładam, że wskaźniki tablicy wynoszą od 0 do N - 1. Zdefiniujmy DP[i]więc długość LIS (najdłuższego wzrastającego podsekwencji), który kończy się na elemencie z indeksem i. Aby obliczyć DP[i], patrzymy na wszystkie indeksy j < ii sprawdzamy, czy DP[j] + 1 > DP[i]i array[j] < array[i](chcemy, aby rosła). Jeśli to prawda, możemy zaktualizować bieżące optimum dla DP[i]. Aby znaleźć globalne optimum dla tablicy, możesz wziąć maksymalną wartość DP[0...N - 1].

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
}

Korzystam z tablicy, prevaby móc później znaleźć rzeczywistą sekwencję nie tylko jej długości. Wystarczy wrócić rekurencyjnie z bestEndpętli za pomocą prev[bestEnd]. -1Wartość jest znak do zatrzymania.


OK, teraz do bardziej wydajnego O(N log N)rozwiązania:

Niech S[pos]zostanie zdefiniowana jako najmniejsza liczba całkowita, która kończy rosnącą sekwencję długości pos. Teraz iteruj przez każdą liczbę całkowitą Xzestawu wejściowego i wykonaj następujące czynności:

  1. Jeśli X> ostatni element w S, to dołącz Xna końcu S. Oznacza to, że znaleźliśmy nowy największy LIS.

  2. W przeciwnym razie znajdź najmniejszy element w S, który jest >=niż X, i zmień go na X. Ponieważ Sjest sortowany w dowolnym momencie, element można znaleźć za pomocą wyszukiwania binarnego w log(N).

Całkowity czas pracy - Nliczby całkowite i wyszukiwanie binarne dla każdego z nich - N * log (N) = O (N log N)

Zróbmy teraz prawdziwy przykład:

Zbiór liczb całkowitych: 2 6 3 4 1 2 9 5 8

Kroki:

0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS

Zatem długość LIS wynosi 5(rozmiar S).

Aby zrekonstruować rzeczywiste LIS, ponownie użyjemy tablicy nadrzędnej. Niech parent[i]będzie poprzednikiem elementu z indeksem ina LISkońcu elementu z indeksem i.

Aby uprościć sprawę, możemy przechowywać w tablicy Snie rzeczywiste liczby całkowite, ale ich indeksy (pozycje) w zbiorze. Nie trzymamy {1, 2, 4, 5, 8}, ale trzymamy {4, 5, 3, 7, 8}.

To jest wejście [4] = 1 , wejście [5] = 2 , wejście [3] = 4 , wejście [7] = 5 , wejście [8] = 8 .

Jeśli odpowiednio zaktualizujemy tablicę nadrzędną, faktyczny LIS to:

input[S[lastElementOfS]], 
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................

Teraz ważna rzecz - jak zaktualizować macierz nadrzędną? Istnieją dwie opcje:

  1. Jeśli X> ostatni element w S, to parent[indexX] = indexLastElement. Oznacza to, że rodzic najnowszego elementu jest ostatnim elementem. Po prostu przygotowujemy Xsię do końca S.

  2. W przeciwnym razie znaleźć indeks najmniejszy element S, który jest >=ponad Xi zmienić go X. Tutaj parent[indexX] = S[index - 1].


4
To nie ma znaczenia Jeśli DP[j] + 1 == DP[i]to DP[i]nie poprawi się DP[i] = DP[j] + 1. Próbujemy zoptymalizować DP[i].
Petar Minchev

11
Ale tutaj odpowiedź powinna brzmieć [1,2,5,8]: 4 pojawia się przed 1 w tablicy, jak może być LIS [1,2,4,5,8]?
SexyBeast,

19
@Cupidvogel - Odpowiedź brzmi [2,3,4,5,8]. Przeczytaj uważnie - Stablica DOES NOTreprezentuje rzeczywistą sekwencję. Let S[pos] be defined as the smallest integer that ends an increasing sequence of length pos.
Petar Minchev

8
Często nie widzę tak jasnych wyjaśnień. Nie tylko jest to bardzo łatwe do zrozumienia, ponieważ wątpliwości są wyjaśnione w wyjaśnieniu, ale także rozwiązuje wszelkie problemy z implementacją, które mogą się pojawić. Niesamowite.
Boyang

16
geeksforgeeks.org/… to prawdopodobnie najlepsze wytłumaczenie tego, co widziałem
eb80

57

Wyjaśnienie Petara Mincheva pomogło mi to wyjaśnić, ale ciężko mi było przeanalizować, co to wszystko, dlatego stworzyłem implementację Pythona z nazbyt zmiennymi nazwami zmiennych i dużą ilością komentarzy. Zrobiłem naiwne rozwiązanie rekurencyjne, rozwiązanie O (n ^ 2) i rozwiązanie O (n log n).

Mam nadzieję, że pomoże to wyczyścić algorytmy!

Rozwiązanie rekurencyjne

def recursive_solution(remaining_sequence, bigger_than=None):
    """Finds the longest increasing subsequence of remaining_sequence that is      
    bigger than bigger_than and returns it.  This solution is O(2^n)."""

    # Base case: nothing is remaining.                                             
    if len(remaining_sequence) == 0:
        return remaining_sequence

    # Recursive case 1: exclude the current element and process the remaining.     
    best_sequence = recursive_solution(remaining_sequence[1:], bigger_than)

    # Recursive case 2: include the current element if it's big enough.            
    first = remaining_sequence[0]

    if (first > bigger_than) or (bigger_than is None):

        sequence_with = [first] + recursive_solution(remaining_sequence[1:], first)

        # Choose whichever of case 1 and case 2 were longer.                         
        if len(sequence_with) >= len(best_sequence):
            best_sequence = sequence_with

    return best_sequence                                                        

Rozwiązanie do programowania dynamicznego O (n ^ 2)

def dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming.  This solution is O(n^2)."""

    longest_subsequence_ending_with = []
    backreference_for_subsequence_ending_with = []
    current_best_end = 0

    for curr_elem in range(len(sequence)):
        # It's always possible to have a subsequence of length 1.                    
        longest_subsequence_ending_with.append(1)

        # If a subsequence is length 1, it doesn't have a backreference.             
        backreference_for_subsequence_ending_with.append(None)

        for prev_elem in range(curr_elem):
            subsequence_length_through_prev = (longest_subsequence_ending_with[prev_elem] + 1)

            # If the prev_elem is smaller than the current elem (so it's increasing)   
            # And if the longest subsequence from prev_elem would yield a better       
            # subsequence for curr_elem.                                               
            if ((sequence[prev_elem] < sequence[curr_elem]) and
                    (subsequence_length_through_prev >
                         longest_subsequence_ending_with[curr_elem])):

                # Set the candidate best subsequence at curr_elem to go through prev.    
                longest_subsequence_ending_with[curr_elem] = (subsequence_length_through_prev)
                backreference_for_subsequence_ending_with[curr_elem] = prev_elem
                # If the new end is the best, update the best.    

        if (longest_subsequence_ending_with[curr_elem] >
                longest_subsequence_ending_with[current_best_end]):
            current_best_end = curr_elem
            # Output the overall best by following the backreferences.  

    best_subsequence = []
    current_backreference = current_best_end

    while current_backreference is not None:
        best_subsequence.append(sequence[current_backreference])
        current_backreference = (backreference_for_subsequence_ending_with[current_backreference])

    best_subsequence.reverse()

    return best_subsequence                                                   

Rozwiązanie do programowania dynamicznego O (n log n)

def find_smallest_elem_as_big_as(sequence, subsequence, elem):
    """Returns the index of the smallest element in subsequence as big as          
    sequence[elem].  sequence[elem] must not be larger than every element in       
    subsequence.  The elements in subsequence are indices in sequence.  Uses       
    binary search."""

    low = 0
    high = len(subsequence) - 1

    while high > low:
        mid = (high + low) / 2
        # If the current element is not as big as elem, throw out the low half of    
        # sequence.                                                                  
        if sequence[subsequence[mid]] < sequence[elem]:
            low = mid + 1
            # If the current element is as big as elem, throw out everything bigger, but 
        # keep the current element.                                                  
        else:
            high = mid

    return high


def optimized_dynamic_programming_solution(sequence):
    """Finds the longest increasing subsequence in sequence using dynamic          
    programming and binary search (per                                             
    http://en.wikipedia.org/wiki/Longest_increasing_subsequence).  This solution   
    is O(n log n)."""

    # Both of these lists hold the indices of elements in sequence and not the        
    # elements themselves.                                                         
    # This list will always be sorted.                                             
    smallest_end_to_subsequence_of_length = []

    # This array goes along with sequence (not                                     
    # smallest_end_to_subsequence_of_length).  Following the corresponding element 
    # in this array repeatedly will generate the desired subsequence.              
    parent = [None for _ in sequence]

    for elem in range(len(sequence)):
        # We're iterating through sequence in order, so if elem is bigger than the   
        # end of longest current subsequence, we have a new longest increasing          
        # subsequence.                                                               
        if (len(smallest_end_to_subsequence_of_length) == 0 or
                    sequence[elem] > sequence[smallest_end_to_subsequence_of_length[-1]]):
            # If we are adding the first element, it has no parent.  Otherwise, we        
            # need to update the parent to be the previous biggest element.            
            if len(smallest_end_to_subsequence_of_length) > 0:
                parent[elem] = smallest_end_to_subsequence_of_length[-1]
            smallest_end_to_subsequence_of_length.append(elem)
        else:
            # If we can't make a longer subsequence, we might be able to make a        
            # subsequence of equal size to one of our earlier subsequences with a         
            # smaller ending number (which makes it easier to find a later number that 
            # is increasing).                                                          
            # Thus, we look for the smallest element in                                
            # smallest_end_to_subsequence_of_length that is at least as big as elem       
            # and replace it with elem.                                                
            # This preserves correctness because if there is a subsequence of length n 
            # that ends with a number smaller than elem, we could add elem on to the   
            # end of that subsequence to get a subsequence of length n+1.              
            location_to_replace = find_smallest_elem_as_big_as(sequence, smallest_end_to_subsequence_of_length, elem)
            smallest_end_to_subsequence_of_length[location_to_replace] = elem
            # If we're replacing the first element, we don't need to update its parent 
            # because a subsequence of length 1 has no parent.  Otherwise, its parent  
            # is the subsequence one shorter, which we just added onto.                
            if location_to_replace != 0:
                parent[elem] = (smallest_end_to_subsequence_of_length[location_to_replace - 1])

    # Generate the longest increasing subsequence by backtracking through parent.  
    curr_parent = smallest_end_to_subsequence_of_length[-1]
    longest_increasing_subsequence = []

    while curr_parent is not None:
        longest_increasing_subsequence.append(sequence[curr_parent])
        curr_parent = parent[curr_parent]

    longest_increasing_subsequence.reverse()

    return longest_increasing_subsequence         

19
Chociaż doceniam wysiłek tutaj, moje oczy bolą, gdy patrzę na te pseudokody.
mostruash

94
mostruash - Nie jestem pewien, co masz na myśli. Moja odpowiedź nie ma pseudo kodu; ma Python.
Sam King,

10
Cóż, najprawdopodobniej oznacza on twoją konwencję nazewnictwa zmiennych i funkcji, co również sprawiło, że moje oczy „bolały”
Adilli Adil

19
Jeśli masz na myśli moją konwencję nazewnictwa, w większości stosuję się do Przewodnika po stylu Google Python. Jeśli opowiadasz się za krótkimi nazwami zmiennych, wolę opisowe nazwy zmiennych, ponieważ ułatwiają zrozumienie i utrzymanie kodu.
Sam King

10
W przypadku rzeczywistej implementacji prawdopodobnie miałoby to sens bisect. Aby zademonstrować działanie algorytmu i jego charakterystykę wydajności, starałem się zachować jak najbardziej prymitywny charakter.
Sam King,

22

Mówiąc o rozwiązaniu DP, zaskoczyło mnie, że nikt nie wspomniał o tym, że LIS można zredukować do LCS . Wszystko, co musisz zrobić, to posortować kopię oryginalnej sekwencji, usunąć wszystkie duplikaty i wykonać LCS z nich. W pseudokodzie jest to:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

I pełna implementacja napisana w Go. Nie musisz utrzymywać całej macierzy DP n ^ 2, jeśli nie musisz rekonstruować rozwiązania.

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}

@max tak, jest to rodzaj napisane w odpowiedzi z macierzą LCS, n ^ 2
Salvador Dali

10

Następująca implementacja C ++ zawiera również pewien kod, który buduje najdłuższy podciąg rosnący za pomocą tablicy o nazwie prev.

std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
    int best_end = 0;
    int sz = s.size();

    if (!sz)
        return std::vector<int>();

    std::vector<int> prev(sz,-1);
    std::vector<int> memo(sz, 0);

    int max_length = std::numeric_limits<int>::min();

    memo[0] = 1;

    for ( auto i = 1; i < sz; ++i)
    {
        for ( auto j = 0; j < i; ++j)
        {
            if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
            {
                memo[i] =  memo[j] + 1;
                prev[i] =  j;
            }
        }

        if ( memo[i] > max_length ) 
        {
            best_end = i;
            max_length = memo[i];
        }
    }

    // Code that builds the longest increasing subsequence using "prev"
    std::vector<int> results;
    results.reserve(sz);

    std::stack<int> stk;
    int current = best_end;

    while (current != -1)
    {
        stk.push(s[current]);
        current = prev[current];
    }

    while (!stk.empty())
    {
        results.push_back(stk.top());
        stk.pop();
    }

    return results;
}

Implementacja bez stosu po prostu odwraca wektor

#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
  auto sz = v.size();
  if(!sz)
    return v;
  std::vector<int> memo(sz, 0);
  std::vector<int> prev(sz, -1);
  memo[0] = 1;
  int best_end = 0;
  int max_length = std::numeric_limits<int>::min();
  for (auto i = 1; i < sz; ++i) {
    for ( auto j = 0; j < i ; ++j) {
      if (s[j] < s[i] && memo[i] < memo[j] + 1) {
        memo[i] = memo[j] + 1;
        prev[i] = j;
      }
    }
    if(memo[i] > max_length) {
      best_end = i;
      max_length = memo[i];
    }
  }

  // create results
  std::vector<int> results;
  results.reserve(v.size());
  auto current = best_end;
  while (current != -1) {
    results.push_back(s[current]);
    current = prev[current];
  }
  std::reverse(results.begin(), results.end());
  return results;
}

4

Oto trzy kroki oceny problemu z punktu widzenia dynamicznego programowania:

  1. Definicja rekurencji: maxLength (i) == 1 + maxLength (j) gdzie 0 <j <i and array [i]> array [j]
  2. Granica parametru rekurencji: może istnieć od 0 do i - 1 podsekwencja przekazana jako parametr
  3. Kolejność oceny: ponieważ rośnie podsekwencja, należy ją oceniać od 0 do n

Jeśli weźmiemy jako przykładową sekwencję {0, 8, 2, 3, 7, 9}, o indeksie:

  • [0] otrzymamy podsekwencję {0} jako przypadek podstawowy
  • [1] mamy 1 nową podsekwencję {0, 8}
  • [2] próba oceny dwóch nowych sekwencji {0, 8, 2} i {0, 2} poprzez dodanie elementu o indeksie 2 do istniejących podsekwencji - tylko jedna jest poprawna, więc dodanie trzeciej możliwej sekwencji {0, 2} do listy parametrów ...

Oto działający kod C ++ 11:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}

Myślę, że definicja rekurencji powinna wynosić maxLength (i) = 1 + max (maxLength (j)) dla 0 <j <i i tablica [i]> tablica [j] zamiast bez max ().
Slothworks

1

Oto implementacja Scala algorytmu O (n ^ 2):

object Solve {
  def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
    xs.foldLeft(List[(Int, List[T])]()) {
      (sofar, x) =>
        if (sofar.isEmpty) List((1, List(x)))
        else {
          val resIfEndsAtCurr = (sofar, xs).zipped map {
            (tp, y) =>
              val len = tp._1
              val seq = tp._2
              if (ord.lteq(y, x)) {
                (len + 1, x :: seq) // reversely recorded to avoid O(n)
              } else {
                (1, List(x))
              }
          }
          sofar :+ resIfEndsAtCurr.maxBy(_._1)
        }
    }.maxBy(_._1)._2.reverse
  }

  def main(args: Array[String]) = {
    println(longestIncrSubseq(List(
      0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
  }
}

1

Oto kolejna implementacja JAVA O (n ^ 2). Brak rekurencji / zapamiętywania w celu wygenerowania faktycznej podsekwencji. Tylko tablica ciągów, która przechowuje rzeczywisty LIS na każdym etapie i tablica do przechowywania długości LIS dla każdego elementu. Cholernie łatwe. Spójrz:

import java.io.BufferedReader;
import java.io.InputStreamReader;

/**
 * Created by Shreyans on 4/16/2015
 */

class LNG_INC_SUB//Longest Increasing Subsequence
{
    public static void main(String[] args) throws Exception
    {
        BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
        System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
        String[] s1=br.readLine().split(" ");
        int n=s1.length;
        int[] a=new int[n];//Array actual of Numbers
        String []ls=new String[n];// Array of Strings to maintain LIS for every element
        for(int i=0;i<n;i++)
        {
            a[i]=Integer.parseInt(s1[i]);
        }
        int[]dp=new int[n];//Storing length of max subseq.
        int max=dp[0]=1;//Defaults
        String seq=ls[0]=s1[0];//Defaults
        for(int i=1;i<n;i++)
        {
            dp[i]=1;
            String x="";
            for(int j=i-1;j>=0;j--)
            {
                //First check if number at index j is less than num at i.
                // Second the length of that DP should be greater than dp[i]
                // -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
                if(a[j]<a[i]&&dp[j]>dp[i]-1)
                {
                    dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
                    x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
                }
            }
            x+=(" "+a[i]);
            ls[i]=x;
            if(dp[i]>max)
            {
                max=dp[i];
                seq=ls[i];
            }
        }
        System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
    }
}

Kod w akcji: http://ideone.com/sBiOQx


0

Można to rozwiązać w O (n ^ 2) za pomocą programowania dynamicznego. Kod Pythona dla tego samego wyglądałby tak:

def LIS(numlist):
    LS = [1]
    for i in range(1, len(numlist)):
        LS.append(1)
        for j in range(0, i):
            if numlist[i] > numlist[j] and LS[i]<=LS[j]:
                LS[i] = 1 + LS[j]
    print LS
    return max(LS)

numlist = map(int, raw_input().split(' '))
print LIS(numlist)

Do wprowadzenia:5 19 5 81 50 28 29 1 83 23

wyjście byłoby:[1, 2, 1, 3, 3, 3, 4, 1, 5, 3] 5

List_index listy wyjściowej jest list_index listy wejściowej. Wartość na danym indeksie list_index na liście wyników oznacza Najdłuższą rosnącą długość podsekwencji dla tego indeksu list.


0

oto implementacja java O (nlogn)

import java.util.Scanner;

public class LongestIncreasingSeq {


    private static int binarySearch(int table[],int a,int len){

        int end = len-1;
        int beg = 0;
        int mid = 0;
        int result = -1;
        while(beg <= end){
            mid = (end + beg) / 2;
            if(table[mid] < a){
                beg=mid+1;
                result = mid;
            }else if(table[mid] == a){
                return len-1;
            }else{
                end = mid-1;
            }
        }
        return result;
    }

    public static void main(String[] args) {        

//        int[] t = {1, 2, 5,9,16};
//        System.out.println(binarySearch(t , 9, 5));
        Scanner in = new Scanner(System.in);
        int size = in.nextInt();//4;

        int A[] = new int[size];
        int table[] = new int[A.length]; 
        int k = 0;
        while(k<size){
            A[k++] = in.nextInt();
            if(k<size-1)
                in.nextLine();
        }        
        table[0] = A[0];
        int len = 1; 
        for (int i = 1; i < A.length; i++) {
            if(table[0] > A[i]){
                table[0] = A[i];
            }else if(table[len-1]<A[i]){
                table[len++]=A[i];
            }else{
                table[binarySearch(table, A[i],len)+1] = A[i];
            }            
        }
        System.out.println(len);
    }    
}

0

To implementacja Java w O (n ^ 2). Po prostu nie użyłem wyszukiwania binarnego, aby znaleźć najmniejszy element w S, który jest> = niż X. Właśnie użyłem pętli for. Korzystanie z wyszukiwania binarnego spowodowałoby złożoność w O (n logn)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}

0

sprawdź kod w Javie, aby uzyskać jak najdłuższy wzrost podsekwencji z elementami tablicy

http://ideone.com/Nd2eba

/**
 **    Java Program to implement Longest Increasing Subsequence Algorithm
 **/

import java.util.Scanner;

/** Class  LongestIncreasingSubsequence **/
 class  LongestIncreasingSubsequence
{
    /** function lis **/
    public int[] lis(int[] X)
    {        
        int n = X.length - 1;
        int[] M = new int[n + 1];  
        int[] P = new int[n + 1]; 
        int L = 0;

        for (int i = 1; i < n + 1; i++)
        {
            int j = 0;

            /** Linear search applied here. Binary Search can be applied too.
                binary search for the largest positive j <= L such that 
                X[M[j]] < X[i] (or set j = 0 if no such value exists) **/

            for (int pos = L ; pos >= 1; pos--)
            {
                if (X[M[pos]] < X[i])
                {
                    j = pos;
                    break;
                }
            }            
            P[i] = M[j];
            if (j == L || X[i] < X[M[j + 1]])
            {
                M[j + 1] = i;
                L = Math.max(L,j + 1);
            }
        }

        /** backtrack **/

        int[] result = new int[L];
        int pos = M[L];
        for (int i = L - 1; i >= 0; i--)
        {
            result[i] = X[pos];
            pos = P[pos];
        }
        return result;             
    }

    /** Main Function **/
    public static void main(String[] args) 
    {    
        Scanner scan = new Scanner(System.in);
        System.out.println("Longest Increasing Subsequence Algorithm Test\n");

        System.out.println("Enter number of elements");
        int n = scan.nextInt();
        int[] arr = new int[n + 1];
        System.out.println("\nEnter "+ n +" elements");
        for (int i = 1; i <= n; i++)
            arr[i] = scan.nextInt();

        LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence(); 
        int[] result = obj.lis(arr);       

        /** print result **/ 

        System.out.print("\nLongest Increasing Subsequence : ");
        for (int i = 0; i < result.length; i++)
            System.out.print(result[i] +" ");
        System.out.println();
    }
}

0

Można to rozwiązać w O (n ^ 2) za pomocą programowania dynamicznego.

Przetwarzaj elementy wejściowe w kolejności i prowadź listę krotek dla każdego elementu. Każda krotka (A, B) dla elementu i będzie oznaczać: A = długość najdłuższej rosnącej pod-sekwencji kończącej się na i oraz B = indeks poprzednika z listy [i] w najdłuższej rosnącej podsekwencji kończącej się na liście [i ].

Zacznij od elementu 1, lista krotek dla elementu 1 będzie [(1,0)] dla elementu i, zeskanuj listę 0..i i znajdź listę elementów [k] taką, że lista [k] <lista [i] , wartość A dla elementu i, Ai będzie wynosić Ak + 1, a Bi będzie wynosić k. Jeśli istnieje wiele takich elementów, dodaj je do listy krotek dla elementu i.

Na koniec znajdź wszystkie elementy o maksymalnej wartości A (długość LIS kończącej się na elemencie) i cofnij się, używając krotek, aby uzyskać listę.

Udostępniłem kod dla tego samego na http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799


3
Powinieneś dołączyć kod do swojej odpowiedzi, ponieważ linki mogą się zepsuć.
NathanOliver

0

Wdrożenie O (n ^ 2) Java:

void LIS(int arr[]){
        int maxCount[]=new int[arr.length];
        int link[]=new int[arr.length];
        int maxI=0;
        link[0]=0;
        maxCount[0]=0;

        for (int i = 1; i < arr.length; i++) {
            for (int j = 0; j < i; j++) {
                if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
                    maxCount[i]=maxCount[j]+1;
                    link[i]=j;
                    if(maxCount[i]>maxCount[maxI]){
                        maxI=i;
                    }
                }
            }
        }


        for (int i = 0; i < link.length; i++) {
            System.out.println(arr[i]+"   "+link[i]);
        }
        print(arr,maxI,link);

    }

    void print(int arr[],int index,int link[]){
        if(link[index]==index){
            System.out.println(arr[index]+" ");
            return;
        }else{
            print(arr, link[index], link);
            System.out.println(arr[index]+" ");
        }
    }

0
def longestincrsub(arr1):
    n=len(arr1)
    l=[1]*n
    for i in range(0,n):
        for j in range(0,i)  :
            if arr1[j]<arr1[i] and l[i]<l[j] + 1:
                l[i] =l[j] + 1
    l.sort()
    return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)

mimo że istnieje sposób na rozwiązanie tego problemu w czasie O (nlogn) (rozwiązuje się to w czasie O (n ^ 2)), ale i tak daje dynamiczne podejście programistyczne, które jest również dobre.


0

Oto moje rozwiązanie Leetcode przy użyciu wyszukiwania binarnego: ->

class Solution:
    def binary_search(self,s,x):
        low=0
        high=len(s)-1
        flag=1
        while low<=high:
              mid=(high+low)//2
              if s[mid]==x:
                 flag=0
                 break
              elif s[mid]<x:
                  low=mid+1
              else:
                 high=mid-1
        if flag:
           s[low]=x
        return s

    def lengthOfLIS(self, nums: List[int]) -> int:
         if not nums:
            return 0
         s=[]
         s.append(nums[0])
         for i in range(1,len(nums)):
             if s[-1]<nums[i]:
                s.append(nums[i])
             else:
                 s=self.binary_search(s,nums[i])
         return len(s)

0

Najprostsze rozwiązanie LIS w C ++ ze złożonością czasową O (nlog (n))

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

WYDAJNOŚĆ:
4


0

Najdłuższa rosnąca kolejność (Java)

import java.util.*;

class ChainHighestValue implements Comparable<ChainHighestValue>{
    int highestValue;
    int chainLength;
    ChainHighestValue(int highestValue,int chainLength) {
        this.highestValue = highestValue;
        this.chainLength = chainLength;
    }
    @Override
    public int compareTo(ChainHighestValue o) {
       return this.chainLength-o.chainLength;
    }

}


public class LongestIncreasingSubsequenceLinkedList {


    private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
        ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
        ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
        for(int i=0;i<size;i++){
            int currValue=arr[i];
            if(valuePairs.size()==0){
                LinkedList<Integer> aList=new LinkedList<>();
                aList.add(arr[i]);
                seqList.add(aList);
                valuePairs.add(new ChainHighestValue(arr[i],1));

            }else{
                try{
                    ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
                    int index=valuePairs.indexOf(heighestIndex);
                    seqList.get(index).add(arr[i]);
                    heighestIndex.highestValue=arr[i];
                    heighestIndex.chainLength+=1;

                }catch (Exception e){
                    LinkedList<Integer> aList=new LinkedList<>();
                    aList.add(arr[i]);
                    seqList.add(aList);
                    valuePairs.add(new ChainHighestValue(arr[i],1));
                }
            }
        }
        ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
        int index=valuePairs.indexOf(heighestIndex);
        return seqList.get(index);
    }

    public static void main(String[] args){
        int arry[]={5,1,3,6,11,30,32,5,3,73,79};
        //int arryB[]={3,1,5,2,6,4,9};
        LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
        System.out.println("Longest Incrementing Subsequence:");
        for(Integer a: LIS){
            System.out.print(a+" ");
        }

    }
}

0

Wdrożyłem LIS w java za pomocą dynamicznego programowania i zapamiętywania. Wraz z kodem wykonałem obliczenia złożoności, tj. Dlaczego jest to O (n Log (base2) n). Moim zdaniem teoretyczne lub logiczne wyjaśnienia są dobre, ale praktyczna demonstracja jest zawsze lepsza do zrozumienia.

package com.company.dynamicProgramming;

import java.util.HashMap;
import java.util.Map;

public class LongestIncreasingSequence {

    static int complexity = 0;

    public static void main(String ...args){


        int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
        int n = arr.length;

        Map<Integer, Integer> memo = new HashMap<>();

        lis(arr, n, memo);

        //Display Code Begins
        int x = 0;
        System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
        for(Map.Entry e : memo.entrySet()){

            if((Integer)e.getValue() > x){
                System.out.print(arr[(Integer)e.getKey()-1] + " ");
                x++;
            }
        }
        System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
        System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
        //Display Code Ends

    }



    static int lis(int[] arr, int n, Map<Integer, Integer> memo){

        if(n==1){
            memo.put(1, 1);
            return 1;
        }

        int lisAti;
        int lisAtn = 1;

        for(int i = 1; i < n; i++){
            complexity++;

            if(memo.get(i)!=null){
                lisAti = memo.get(i);
            }else {
                lisAti = lis(arr, i, memo);
            }

            if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
                lisAtn = lisAti +1;
            }
        }

        memo.put(n, lisAtn);
        return lisAtn;

    }
}

Podczas gdy uruchomiłem powyższy kod -

Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80 
And Time Complexity for Array size 9 is just 36 
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0


Podaje złą odpowiedź na dane wejściowe: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
ahadcse

0

Podejście O (NLog (N)), aby znaleźć najdłuższą rosnącą sekwencję podrzędną Zachowajmy
tablicę, w której i-ty element jest najmniejszą możliwą liczbą, z którą podsekwencja o rozmiarze ai może się zakończyć.

Celowo unikam dalszych szczegółów, ponieważ najlepiej głosowana odpowiedź już to wyjaśnia, ale ta technika ostatecznie prowadzi do zgrabnej implementacji przy użyciu ustawionej struktury danych (przynajmniej w c ++).

Oto implementacja w c ++ (przy założeniu, że wymagany jest ściśle zwiększający się najdłuższy rozmiar podsekwencji)

#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;

int main()
{
  ll n;
  cin >> n;
  ll arr[n];
  set<ll> S;

  for(ll i=0; i<n; i++)
  {
    cin >> arr[i];
    auto it = S.lower_bound(arr[i]);
    if(it != S.end())
      S.erase(it);
    S.insert(arr[i]);
  }

  cout << S.size() << endl; // Size of the set is the required answer

  return 0;
}
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.