Czy ktoś ma testy porównawcze (kod i wyniki) porównujące wydajność aplikacji na Androida napisanych w Xamarin C # i Javie? [Zamknięte]


544

Natknąłem się na twierdzenia Xamarin, że ich implementacja Mono na Androidzie i aplikacje kompilowane w języku C # są szybsze niż kod Java. Czy ktoś przeprowadził rzeczywiste testy porównawcze na bardzo podobnym kodzie Java i C # na różnych platformach Android, aby zweryfikować takie twierdzenia, mógł opublikować kod i wyniki?

Dodano 18 czerwca 2013 r

Ponieważ nie było odpowiedzi i nie mogłem znaleźć takich testów wykonanych przez innych, postanowiłem zrobić własne testy. Niestety moje pytanie pozostaje „zablokowane”, więc nie mogę opublikować tego jako odpowiedzi, tylko edytować pytanie. Głosuj, aby ponownie otworzyć to pytanie. Do C # użyłem Xamarin.Android Ver. 4.7.09001 (beta). Kod źródłowy, wszystkie dane, których użyłem do testowania, oraz skompilowane pakiety APK znajdują się w GitHub:

Java: https://github.com/gregko/TtsSetup_Java

C #: https://github.com/gregko/TtsSetup_C_sharp

Jeśli ktoś chciałby powtórzyć moje testy na innych urządzeniach lub emulatorach, chciałbym również poznać wyniki.

Wyniki z moich testów

Przeniesiłem moją klasę wyodrębniania zdań do C # (z mojej aplikacji @Voice Aloud Reader) i przeprowadziłem testy na 10 plikach HTML w języku angielskim, rosyjskim, francuskim, polskim i czeskim. Każde uruchomienie przeprowadzono 5 razy na wszystkich 10 plikach, a całkowity czas dla 3 różnych urządzeń i jednego emulatora podano poniżej. Testowałem tylko kompilacje „Release”, bez włączonego debugowania.

HTC Nexus One Android 2.3.7 (API 10) - CyanogenMod ROM

Java: Całkowity czas całkowity (5 uruchomień): 12361 ms, całkowity odczyt pliku: 13304 ms

C #: Całkowity czas całkowity (5 uruchomień): 17504 ms, z całkowitym odczytem pliku: 17956 ms

Samsung Galaxy S2 SGH-I777 (Android 4.0.4, API 15) - CyanogenMod ROM

Java: Grand całkowity czas (5 uruchomień): 8947 ms, z całkowitym odczytem pliku: 9186 ms

C #: Całkowity czas całkowity (5 uruchomień): 9884 ms, z całkowitym odczytem pliku: 10247 ms

Samsung GT-N7100 (Android 4.1.1 JellyBean, API 16) - Samsung ROM

Java: Całkowity czas całkowity (5 uruchomień): 9742 ms, z całkowitym odczytem pliku: 10111 ms

C #: Całkowity czas całkowity (5 uruchomień): 10459 ms, z całkowitym odczytem pliku: 10696 ms

Emulator - Intel (Android 4.2, API 17)

Java: Całkowity czas całkowity (5 uruchomień): 2699 ms, całkowity odczyt pliku: 3127 ms

C #: Całkowity czas całkowity (5 uruchomień): 2049 ms, z całkowitym odczytem pliku: 2182 ms

Emulator - Intel (Android 2.3.7, API 10)

Java: Całkowity czas całkowity (5 uruchomień): 2992 ms, całkowity odczyt pliku: 3591 ms

C #: Całkowity czas całkowity (5 uruchomień): 2049 ms, z całkowitym odczytem pliku: 2257 ms

Emulator - Uzbrojenie (Android 4.0.4, API 15)

Java: Całkowity czas całkowity (5 uruchomień): 41751 ms, całkowity odczyt pliku: 43866 ms

C #: Całkowity czas całkowity (5 uruchomień): 44136 ms, całkowity odczyt pliku: 45109 ms

Krótka dyskusja

Mój kod testowy zawiera głównie parsowanie tekstu, zastępowanie i wyszukiwanie Regex, być może dla innego kodu (np. Więcej operacji numerycznych) wyniki byłyby inne. Na wszystkich urządzeniach z procesorami ARM Java działała lepiej niż kod Xamarin C #. Największa różnica występowała w systemie Android 2.3, w którym kod C # działa w przybliżeniu. 70% prędkości Java.

Na emulatorze Intel (z technologią Intel HAX, emulator działa w trybie szybkiego podglądu), kod Xamarin C # uruchamia mój przykładowy kod znacznie szybciej niż Java - około 1,35 razy szybciej. Może kod i biblioteki maszyn wirtualnych Mono są znacznie lepiej zoptymalizowane na Intelie niż na ARM?

Edytuj 8 lipca 2013 r

Właśnie zainstalowałem emulator Genymotion Android, który działa w Oracle VirtualBox, i ponownie ten używa natywnego procesora Intel, nie emulując procesora ARM. Podobnie jak w przypadku emulatora Intel HAX, ponownie C # działa tutaj znacznie szybciej. Oto moje wyniki:

Emulator Genymotion - Intel (Android 4.1.1, API 16)

Java: Całkowity czas całkowity (5 uruchomień): 2069 ms, całkowity odczyt pliku: 2248 ms

C #: Całkowity czas całkowity (5 uruchomień): 1543 ms, całkowity odczyt pliku: 1642 ms

Następnie zauważyłem, że nastąpiła aktualizacja Xamarin.Android beta, wersja 4.7.11, z uwagami do wydania, w których wspomniano również o niektórych zmianach w środowisku wykonawczym Mono. Postanowiłem szybko przetestować niektóre urządzenia ARM i wielka niespodzianka - poprawiono liczby C #:

BN Nook XD +, ARM (Android 4.0)

Java: Całkowity czas całkowity (5 uruchomień): 8103 ms, całkowity odczyt pliku: 8569 ms

C #: Całkowity czas całkowity (5 uruchomień): 7951 ms, z całkowitym odczytem pliku: 8161 ms

Łał! C # jest teraz lepszy niż Java? Postanowiłem powtórzyć test na mojej Galaxy Note 2:

Samsung Galaxy Note 2 - ARM (Android 4.1.1)

Java: Całkowity czas całkowity (5 uruchomień): 9675 ms, całkowity odczyt pliku: 10028 ms

C #: Całkowity czas całkowity (5 uruchomień): 9911 ms, z całkowitym odczytem pliku: 10104 ms

Tutaj C # wydaje się być tylko nieco wolniejszy, ale te liczby zatrzymały mnie: Dlaczego czas jest dłuższy niż w Nook HD +, mimo że Note 2 ma szybszy procesor? Odpowiedź: tryb oszczędzania energii. W Nook został wyłączony, w Note 2 - włączony. Podjęto decyzję o przetestowaniu z wyłączonym trybem oszczędzania energii (podobnie jak przy włączonym, ogranicza także prędkość procesora):

Samsung Galaxy Note 2 - ARM (Android 4.1.1), wyłączono oszczędzanie energii

Java: Całkowity czas całkowity (5 uruchomień): 7153 ms, całkowity odczyt pliku: 7459 ms

C #: Całkowity czas całkowity (5 uruchomień): 6906 ms, z całkowitym odczytem pliku: 7070 ms

O dziwo, C # jest również nieco szybszy niż Java na procesorze ARM. Duża poprawa!

Edytuj 12 lipca 2013 r

Wszyscy wiemy, że nic nie przebije natywnego kodu szybkości i nie byłem zadowolony z wydajności mojego rozdzielacza zdań w Javie lub C #, szczególnie, że muszę go poprawić (a tym samym spowolnić). Postanowiłem przepisać go w C ++. Oto małe (tj. Mniejszy zestaw plików niż poprzednie testy, z innych powodów) porównanie prędkości natywnej i Java na moim Galaxy Note 2, z wyłączonym trybem oszczędzania energii:

Java: Całkowity czas całkowity (5 uruchomień): 3292 ms, całkowity odczyt pliku: 3454 ms

Natywny kciuk: Całkowity czas całkowity (5 uruchomień): 537 ms, całkowity odczyt pliku: 657 ms

Uzbrojenie rodzime: Całkowity czas całkowity (5 uruchomień): 458 ms, całkowity odczyt pliku: 587 ms

Wygląda na to, że w moim konkretnym teście natywny kod jest 6-7 razy szybszy niż Java. Zastrzeżenie: nie mogłem używać klasy std :: regex na Androidzie, więc musiałem napisać własne specjalistyczne procedury szukające podziałów akapitów lub tagów HTML. Moje pierwsze testy tego samego kodu na komputerze PC przy użyciu wyrażenia regularnego były około 4 do 5 razy szybsze niż Java.

Uff! Ponownie budząc surową pamięć wskaźnikami char * lub wchar *, od razu poczułem się 20 lat młodszy! :)

Edytuj 15 lipca 2013 r

(Zobacz poniżej, z edycjami 30.07.2013, aby uzyskać znacznie lepsze wyniki z Dot42)

Z pewnym trudem udało mi się przenieść moje testy C # na Dot42 (wersja 1.0.1.71 beta), kolejną platformę C # dla Androida. Wstępne wyniki pokazują, że kod Dot42 jest około 3 razy (3 razy) wolniejszy niż Xamarin C # (wer. 4.7.11) na emulatorze Intel Android. Jednym z problemów jest to, że klasa System.Text.RegularExpressions w Dot42 nie ma funkcji Split (), której użyłem w testach Xamarin, więc zamiast tego użyłem klasy Java.Util.Regex i Java.Util.Regex.Pattern.Split () , więc w tym konkretnym miejscu w kodzie istnieje niewielka różnica. Nie powinno to stanowić dużego problemu. Dot42 kompiluje się do kodu Dalvik (DEX), więc natywnie współpracuje z Javą na Androidzie, nie potrzebuje kosztownego współdziałania z C # do Javy jak Xamarin.

Dla porównania uruchamiam również test na urządzeniach ARM - tutaj kod Dot42 jest „tylko” 2x wolniejszy niż Xamarin C #. Oto moje wyniki:

HTC Nexus One Android 2.3.7 (ARM)

Java: Całkowity czas całkowity (5 uruchomień): 12187 ms, z całkowitym odczytem pliku: 13200 ms

Xamarin C #: całkowity czas całkowity (5 uruchomień): 13935 ms, całkowity odczyt pliku: 14465 ms

Dot42 C #: Całkowity czas całkowity (5 uruchomień): 26000 ms, z całkowitym odczytem pliku: 27168 ms

Samsung Galaxy Note 2, Android 4.1.1 (ARM)

Java: Całkowity czas całkowity (5 uruchomień): 6895 ms, całkowity odczyt pliku: 7275 ms

Xamarin C #: całkowity czas całkowity (5 uruchomień): 6466 ms, całkowity odczyt pliku: 6720 ms

Dot42 C #: Całkowity czas całkowity (5 uruchomień): 11185 ms, z całkowitym odczytem pliku: 11843 ms

Emulator Intel, Android 4.2 (x86)

Java: Całkowity czas całkowity (5 uruchomień): 2389 ms, całkowity odczyt pliku: 2770 ms

Xamarin C #: Całkowity czas całkowity (5 uruchomień): 1748 ms, całkowity odczyt pliku: 1933 ms

Dot42 C #: Całkowity czas całkowity (5 uruchomień): 5150 ms, całkowity odczyt pliku: 5459 ms

Dla mnie interesujące było również zauważyć, że Xamarin C # jest nieco szybszy niż Java na nowszym urządzeniu ARM i nieco wolniejszy na starym Nexus One. Jeśli ktoś chciałby również uruchomić te testy, daj mi znać, a zaktualizuję źródła na GitHub. Szczególnie interesujące byłoby zobaczyć wyniki z prawdziwego urządzenia z Androidem z procesorem Intel.

Aktualizacja 26.07.2013

Tylko szybka aktualizacja, ponownie skompilowana przez aplikacje testowe z najnowszą wersją Xamarin.Android 4.8, a także z wydaną dzisiaj aktualizacją dot42 1.0.1.72 - bez istotnych zmian w porównaniu z poprzednimi wynikami.

Aktualizacja 30.07.2013 - lepsze wyniki dla dot42

Ponownie przetestowałem Dot42 z portem Roberta (od twórców dot42) mojego kodu Java do C #. W moim porcie C # wykonanym początkowo dla Xamarin zastąpiłem niektóre rodzime klasy Java, takie jak ListArray, klasą List rodzimą w C # itp. Robert nie miał mojego kodu źródłowego Dot42, więc przeniósł go ponownie z Javy i użył oryginalnych klas Java w takie miejsca, z których korzysta Dot42, tak sądzę, ponieważ działa w Dalvik VM, jak Java, a nie w Mono, jak Xamarin. Teraz wyniki Dot42 są znacznie lepsze. Oto dziennik z moich testów:

30.07.2013 - Testy Dot42 z większą liczbą klas Java w Dot42 C #

Emulator Intel, Android 4.2

Dot42, kod Grega używający StringBuilder.Replace () (jak w Xamarin):
Całkowity czas całkowity (5 uruchomień): 3646 ms, całkowity odczyt pliku: 3830 ms

Dot42, kod Grega za pomocą String.Replace () (jak w Javie i kodzie Roberta):
Całkowity czas całkowity (5 uruchomień): 3027 ms, całkowity odczyt pliku: 3206 ms

Dot42, Kod Roberta:
Całkowity czas całkowity (5 uruchomień): 1781 ms, z całkowitym odczytem pliku: 1999 ms

Xamarin:
całkowity czas całkowity (5 uruchomień): 1373 ms, całkowity odczyt pliku: 1505 ms

Java:
Całkowity czas całkowity (5 uruchomień): 1841 ms, całkowity odczyt pliku: 2044 ms

ARM, Samsung Galaxy Note 2, wyłączanie oszczędzania energii, Android 4.1.1

Dot42, kod Grega używający StringBuilder.Replace () (jak w Xamarin):
Całkowity czas całkowity (5 uruchomień): 10875 ms, przy całkowitym odczycie pliku: 11280 ms

Dot42, kod Grega za pomocą String.Replace () (jak w Javie i kodzie Roberta):
Całkowity czas całkowity (5 uruchomień): 9710 ms, z całkowitym odczytem pliku: 10097 ms

Dot42, kod Roberta:
Całkowity czas całkowity (5 przebiegów): 6279 ms, całkowity odczyt pliku: 6622 ms

Xamarin:
całkowity czas całkowity (5 uruchomień): 6201 ms, całkowity odczyt pliku: 6476 ms

Java:
Całkowity czas całkowity (5 uruchomień): 7141 ms, całkowity odczyt pliku: 7479 ms

Nadal uważam, że Dot42 ma przed sobą długą drogę. Posiadanie klas podobnych do Java (np. ArrayList) i dobra wydajność z nimi ułatwiłoby przenoszenie kodu z Java na C #. Jest to jednak coś, czego nie zrobiłbym wiele. Wolałbym użyć istniejącego kodu C # (bibliotek itp.), Który będzie używał natywnych klas C # (np. List), i który działałby wolno z bieżącym kodem dot42 i bardzo dobrze z Xamarin.

Greg


5
Tryb DEBUG na Nexusie 7 4.2.2 z pewnymi optymalizacjami dla ciągów znaków i xamarin alfa 9: Całkowity czas: 3907 ms, z całkowitym odczytem pliku: 4016. Co oznacza „5 uruchomień”?
Softlion

1
„to pytanie prawdopodobnie zachęci do debaty, argumentów, ankiet lub rozszerzonej dyskusji” <- patrz wyżej;)
LearnCocos2D

2
@ LearnCocos2D - Zgłaszam tylko konkretne wyniki i liczby, tj. Fakty. Panowie nie kwestionują faktów :)
gregko,

2
no cóż, naukowcy tak;) istnieje różnica między obserwowanym zachowaniem a faktem. Stanie się faktem o wiele więcej i nawet wtedy zastosowanie do innych użytkowników / sytuacji pozostaje wątpliwe. Jest to sedno testów porównawczych, które przedstawiają tylko fakty na powierzchni - dopóki nie dowiesz się, że sprzedawca x zoptymalizował sterownik dla konkretnej aplikacji testowej. W powiązanej notatce udowodniono kiedyś, że woda ma pamięć (tj. Test homeopatyczny), co zostało obalone po uwzględnieniu i wykluczeniu uprzedzenia testera, a następnie nie wykazało żadnego znaczenia statystycznego.
LearnCocos2D,

3
plus, w następnej wersji wersji +0.1, te parametry wydajności mogą się znacznie zmienić - wtedy wszystkie przedstawione tutaj dobre wysiłki zmienią się z „faktów” na „dyskusje”. Jednak każdy, kto tu przyjdzie, może uznać to za fakt i wyciągnąć niewłaściwy wniosek. Kolejny rdzeń testów porównawczych: są one reprezentatywne tylko dla danego momentu i wersji używanego oprogramowania. Następnego dnia mogą już nie odzwierciedlać rzeczywistości. Musisz ciągle testować wyniki. Dlatego wyniki tutaj można uznać za subiektywne i mało znaczące.
LearnCocos2D,

Odpowiedzi:


62

Tak, wirtualna maszyna Xamarin Mono jest bardziej imponująca niż Dalvik Google'a używany w Androidzie. Przetestowałem to na tabletach HTC Flyer i Acer Iconia Tab, aby przeprowadzić analizę porównawczą portu C # Androida przez Mono w stosunku do Java Dalvik, z dobrą implementacją C # Androida i naprawdę niepokojącą Dalvik opartą na Javie.


4
@PeterLawrey, proszę zobaczyć moją aktualizację pytania. Zamierzam przenieść część mojego prawdziwego kodu Java do C # i uruchomić testy porównawcze, a następnie opublikować je tutaj - jeśli ponownie otworzą moje pytanie, ponieważ strażnicy SO zamknęli go niemal natychmiast.
gregko

1
@PeterLawrey - Przeprowadziłem teraz testy i opublikowałem wyniki na StackOverflow, ale w samym pytaniu, ponieważ nadal pozostaje „zablokowane” i nie może opublikować odpowiedzi. Jeśli możesz, dodaj swój głos, aby ponownie otworzyć pytanie. Wyniki są interesujące, na ARM Java wygrywa bezdotykowo, na Intel - kod C # w Mono jest znacznie szybszy.
gregko

9
@gregko Warto zauważyć, że widzisz emulację C # szybciej, ale Java jest szybsza na prawdziwych telefonach. Dla mnie jest to ważne rozróżnienie. Nie martwiłbym się wydajnością emulatora, w rzeczywistości sugerowałbym, aby emulator był tak wolny / szybki jak rzeczywisty. Głosowałem za ponownym otwarciem.
Peter Lawrey,

14
Zachowaj ostrożność, używając wyrażeń regularnych jako testu wydajności. Różnice algorytmiczne w implementacji RE mogą powodować ogromne różnice. To, co możesz testować powyżej, to jakość wdrożenia RE, a nie maszyny wirtualne Dalvik lub Mono. Lepszym testem byłby ręcznie parsowany kod, który wykorzystuje identyczne, oczywiste algorytmy napisane w stylu idiomatycznym dla każdego języka.
Christopher

4
Ta odpowiedź jest bezwartościowa bez wyjaśnienia, w jaki sposób wykonałeś te testy lub wyniki testów. Tak jak jest teraz: całkowicie oparte na opiniach.
Rolf ツ


34

Niedawno sprawdziliśmy, czy aplikacja Xamarin jest używana. Wykorzystaliśmy kod C #, który już napisaliśmy dla wersji naszej aplikacji Windows RT. Niektóre szczegółowe informacje musiały zostać przepisane dla wersji Androida.

Odkryliśmy, że operacje we / wy w Xamarin C # są około 2x wolniejsze niż Java. Nasza aplikacja jest mocno związana z operacjami we / wy. Nie odkryliśmy jeszcze przyczyny tego, ale w tej chwili zakładamy, że jest to spowodowane zebraniem. Chociaż przez większość czasu staramy się pozostawać wewnątrz maszyny wirtualnej Mono, nie wiemy, w jaki sposób Mono faktycznie uzyskuje dostęp do dysku.

Mówi także, że nasz kod C # używa SQLite.NET ( https://github.com/praeclarum/sqlite-net ). Identyczne pobieranie przy użyciu kodu SQLite.NET jest także 2x wolniejsze niż przy użyciu opakowania Javaite SQLite w Androidzie. Po przejrzeniu kodu źródłowego wydaje się, że wiąże się on bezpośrednio z biblioteką C.dll, więc nie wiem, dlaczego jest o wiele wolniejszy. Jedną z możliwości jest to, że zbieranie ciągów z języka macierzystego na Javę może być szybsze na Androidzie niż rodzime na C # na Xamarinie.


1
Jest to bardzo prawdopodobne ze względu na „wiązania” Xamerin musi wchodzić w interakcje z systemem. Każde wywołanie systemowe domyślnie przechodzi do klasy Java, ale musi być delegowane na maszynę wirtualną Mono, co zajmuje dużo czasu. To samo dzieje się również w odwrotnej kolejności. Wyjaśniłem to nieco więcej w mojej odpowiedzi: stackoverflow.com/a/46973819/1052697
Rolf ツ


11

Oto kilka informacji, które znalazłem w innym teście między rozwiązaniami natywnymi, Xamarin i Xamarin.Forms (testy obejmują również wydajność iOS) na dwóch następujących urządzeniach:

Samsung Galaxy A7 : Wersja systemu Android: 6.0 Jednostka centralna: ośmiordzeniowy 1,9 GHz Cortex-A53 RAM: 3 GB Rozdzielczość wyświetlacza: 1920 × 1080

iPhone 6s : wersja iOS: 10.3.3 Jednostka centralna: dwurdzeniowy 1,84 GHz Twister RAM: 2 GB Rozdzielczość wyświetlacza: 1334 × 750

Porównanie składa się z kilku wspólnych funkcji, każda z własną aplikacją:

- Basic Hello World
- REST API
- JSON Serialization/Deserialization
- Photo Loading
- SQL Database Insert and Get All

Każdy test jest powtarzany kilka razy, wykresy pokazują średnie wyniki.


Witaj świecie

Podstawowe porównanie wydajności Hellow World


Reszta API

Zestaw testów mających na celu pomiar czasu potrzebnego aplikacji do wysłania żądania za pośrednictwem interfejsu API REST i odebrania odpowiedzi bez dalszego przetwarzania danych przy użyciu interfejsu API OpenWeatherMap.

Porównanie wydajności reszty interfejsu API


Testy operacyjne JSON wykonane przy użyciu frameworku Newtonoft Json.net do serializacji i deserializacji obiektów JSON we wszystkich aplikacjach Xamarin. Natywna serializacja i deserializacja Androida została przetestowana przy użyciu dwóch bibliotek Java: Jackson i GSON.

Wykonano dwa przebiegi, pierwszy od zera, drugi z buforowanymi informacjami i operacjami

Pierwszy bieg :

Pierwsze uruchomienie serializacji JSON

Pierwsze uruchomienie deserializacji JSON

(Natywne operacje JSON na iOS zabijają ten test btw, a Xamarin dołącza do niego w drugim)

Drugie uruchomienie JSON Serialization

Drugie uruchomienie deserializacji JSON


Operacje fotograficzne

Najpierw załaduj obrazy w trzech różnych rozdzielczościach:

Resolution  858×569, Size  868Kb
Resolution  2575×1709, Size  8Mb
Resolution  4291×2848, Size  28.9Mb

Najpierw załaduj obraz Androida

Najpierw załaduj obraz iOS

Coś wydawało się niepewne w wynikach Xamarin.Forms dla tego testu, więc nie jest to uwzględnione na wykresie.


Operacje SQLite

Dwie przetestowane operacje:

BulkInsert: Loading rows of data into a database table.
GetAll: Retrieving all data from the database.

Z bazami danych zawierającymi 10 000 rekordów. Wszystkie operacje były przetwarzane wewnętrznie na urządzeniach.

Występy SQLite dla Androida

Występy SQLite iOS


Xamarin Native (Xamarin.iOS / Xamarin.Android) pokazuje się jako raczej dobra alternatywa dla kodu natywnego, podczas gdy Xamarin.Forms wydaje się powolny w wielu przypadkach, ale może być naprawdę dobrym rozwiązaniem do szybkiego tworzenia naprawdę prostych aplikacji.

Pełny test pochodzi z tego źródła:

https://www.altexsoft.com/blog/engineering/performance-comparison-xamarin-forms-xamarin-ios-xamarin-android-vs-android-and-ios-native-applications/

Dziękuję za udzielenie wyjaśnień w celu poprawy mojej odpowiedzi, mam nadzieję, że to trochę pomoże :)


7

Wydajność

Wydajność jest niejasnym słowem, jeśli nie zdefiniujesz, co rozumiesz przez wydajność, jeśli jest to zwykła wydajność obliczeniowa Xamarin może być szybszy niż Java, w zależności od charakteru obliczeń.

Android jest standardowo wyposażony w wiele formularzy do wykonywania kodu w:

  • RenderScript (CPU i GPU)
  • Java (SDK)
  • C ++ (NDK)
  • OpenGL (GPU)

Jest oczywiste, że podczas wykonywania kodu im bardziej natywne jest rozwiązanie, tym szybciej będzie ono działać. Język oparty na czasie wykonywania nigdy nie przebije języka, który działa bezpośrednio na procesorze.

Ale z drugiej strony, jeśli chcesz zmierzyć rzeczywistą wydajność użytkowania Java jest propbaby będzie szybsza niż Xamarin.

Xamarin i dlaczego może być wolniejszy

Porównując Xamarin ze zwykłymi starymi aplikacjami Java, wydajność może być znacznie wyższa dla Xamarin, ponieważ może być wolniejsza.

W prawdziwym świecie aplikacje Xamarin są prawdopodobnie wolniejsze niż aplikacje Java, ponieważ wiele wywołań systemu Android / Java (systemowych) musi być delegowanych do i z środowiska wykonawczego Xamarin za pomocą tak zwanych powiązań.

Istnieje kilka różnych rodzajów powiązań, o których należy wiedzieć:

  • JNI (Java Native Interface): Powiązanie używane w wielu aplikacjach na Androida do interfejsu między kodem Java (SDK) a rodzimym kodem C ++ (NDK).
  • MCW (Managed Callable Wrappers): Powiązanie dostępne w Xamarin do interfejsu od zarządzanego kodu C # do kodu Java (czas działania Androida).
  • ACW (Android Callable Wrappers): Powiązanie dostępne w Xamarin do interfejsu od kodu Java (czas działania Androida) do zarządzanego kodu C #.

Więcej informacji o MCW i ACW tutaj: https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/

Wiązania są bardzo wydajne pod względem wydajności. Wywołanie metody C ++ z Javy powoduje ogromne obciążenie w czasie wywoływania, wywoływanie metody C ++ z poziomu C ++ jest wiele razy szybsze.

Ktoś przeprowadził test wydajności, aby obliczyć, ile średnio operacji Java kosztuje połączenie JNI: jaki jest narzut ilościowy związany z wykonaniem połączenia JNI?

Ale nie tylko połączenia JNI są kosztowne, podobnie jak połączenia zi do MCW i ACW. Rzeczywiste aplikacje Xamarin wykonują wiele wywołań za pomocą powiązań, a dzięki temu rzeczywiste użycie aplikacji Xamarin może być (i będzie ogólnie) wolniejsze niż zwykła stara aplikacja Java. Jednak w zależności od sposobu zaprojektowania aplikacji Xamarin jest bardzo prawdopodobne, że użytkownik nawet nie zauważy różnicy.

TLDR / Podsumowanie: Xamarin musi używać powiązań al sort , które są czasochłonne.

Poza powiązaniami istnieje wiele innych czynników związanych z wydajnością w świecie rzeczywistym, na przykład: rozmiar pliku binarnego, ładowanie aplikacji do pamięci, operacje we / wy i wiele innych. Wpis na blogu opisujący niektóre z tych rzeczy można znaleźć tutaj: https://magenic.com/thinking/mobile-development-platform-performance-part-2-native-cordova-classic-xamarin-xamarin-forms


Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.