Jeśli masz duże ramki danych, zauważyłem, że metoda scipy
indeksu przestrzennego cKDTree .query
zwraca bardzo szybkie wyniki wyszukiwania najbliższego sąsiada. Ponieważ wykorzystuje indeks przestrzenny, jego rzędy wielkości są szybsze niż zapętlanie przez ramkę danych, a następnie znajdowanie minimum wszystkich odległości. Jest także szybszy niż używanie foremnych nearest_points
z RTree (metoda indeksu przestrzennego dostępna za pośrednictwem geopandas), ponieważ cKDTree pozwala na wektoryzację wyszukiwania, podczas gdy druga metoda tego nie robi.
Oto funkcja pomocnika, która zwróci odległość i „imię” najbliższego sąsiada gpd2
z każdego punktu w gpd1
. Zakłada się, że oba pliki gdf mają geometry
kolumnę (punktów).
import geopandas as gpd
import numpy as np
import pandas as pd
from scipy.spatial import cKDTree
from shapely.geometry import Point
gpd1 = gpd.GeoDataFrame([['John', 1, Point(1, 1)], ['Smith', 1, Point(2, 2)],
['Soap', 1, Point(0, 2)]],
columns=['Name', 'ID', 'geometry'])
gpd2 = gpd.GeoDataFrame([['Work', Point(0, 1.1)], ['Shops', Point(2.5, 2)],
['Home', Point(1, 1.1)]],
columns=['Place', 'geometry'])
def ckdnearest(gdA, gdB):
nA = np.array(list(zip(gdA.geometry.x, gdA.geometry.y)) )
nB = np.array(list(zip(gdB.geometry.x, gdB.geometry.y)) )
btree = cKDTree(nB)
dist, idx = btree.query(nA, k=1)
gdf = pd.concat(
[gdA, gdB.loc[idx, gdB.columns != 'geometry'].reset_index(),
pd.Series(dist, name='dist')], axis=1)
return gdf
ckdnearest(gpd1, gpd2)
A jeśli chcesz znaleźć najbliższy punkt LineString, oto pełny działający przykład:
import itertools
from operator import itemgetter
import geopandas as gpd
import numpy as np
import pandas as pd
from scipy.spatial import cKDTree
from shapely.geometry import Point, LineString
gpd1 = gpd.GeoDataFrame([['John', 1, Point(1, 1)],
['Smith', 1, Point(2, 2)],
['Soap', 1, Point(0, 2)]],
columns=['Name', 'ID', 'geometry'])
gpd2 = gpd.GeoDataFrame([['Work', LineString([Point(100, 0), Point(100, 1)])],
['Shops', LineString([Point(101, 0), Point(101, 1), Point(102, 3)])],
['Home', LineString([Point(101, 0), Point(102, 1)])]],
columns=['Place', 'geometry'])
def ckdnearest(gdfA, gdfB, gdfB_cols=['Place']):
A = np.concatenate(
[np.array(geom.coords) for geom in gdfA.geometry.to_list()])
B = [np.array(geom.coords) for geom in gdfB.geometry.to_list()]
B_ix = tuple(itertools.chain.from_iterable(
[itertools.repeat(i, x) for i, x in enumerate(list(map(len, B)))]))
B = np.concatenate(B)
ckd_tree = cKDTree(B)
dist, idx = ckd_tree.query(A, k=1)
idx = itemgetter(*idx)(B_ix)
gdf = pd.concat(
[gdfA, gdfB.loc[idx, gdfB_cols].reset_index(drop=True),
pd.Series(dist, name='dist')], axis=1)
return gdf
c = ckdnearest(gpd1, gpd2)