Odroczone cieniowanie kafelków, obliczanie frusty kafelków w OpenGL


11

Próbuję zrobić odroczone cieniowanie kafelków w OpenGL za pomocą modułu obliczeniowego, ale wpadłem w kłopoty, gdy próbowałem utworzyć frustum dla każdego kafelka. Używam demonstracji AMD Forward + (napisanej w D3D) jako przewodnika, ale światła wydają się być wygaszone, kiedy nie powinny.

AKTUALIZACJA

Przeczytaj poniższe aktualizacje.

To jest mój (kompletny) moduł cieniujący:

    #version 430 core

#define MAX_LIGHTS 1024
#define MAX_LIGHTS_PER_TILE 40

#define WORK_GROUP_SIZE 16

struct PointLight
{
    vec3 position;
    float radius;
    vec3 color;
    float intensity;
};

layout (binding = 0, rgba32f) uniform writeonly image2D outTexture;
layout (binding = 1, rgba32f) uniform readonly image2D normalDepth;
layout (binding = 2, rgba32f) uniform readonly image2D diffuse;
layout (binding = 3, rgba32f) uniform readonly image2D specular;
layout (binding = 4, rgba32f) uniform readonly image2D glowMatID;

layout (std430, binding = 5) buffer BufferObject
{
    PointLight pointLights[];
};

uniform mat4 view;
uniform mat4 proj;
uniform mat4 viewProj;
uniform mat4 invViewProj;
uniform mat4 invProj;
uniform vec2 framebufferDim;

layout (local_size_x = WORK_GROUP_SIZE, local_size_y = WORK_GROUP_SIZE) in;

shared uint minDepth = 0xFFFFFFFF;
shared uint maxDepth = 0;
shared uint pointLightIndex[MAX_LIGHTS];
shared uint pointLightCount = 0;

vec3 ReconstructWP(float z, vec2 uv_f)
{
    vec4 sPos = vec4(uv_f * 2.0 - 1.0, z, 1.0);
    sPos = invViewProj * sPos;

    return (sPos.xyz / sPos.w);
}

vec4 ConvertProjToView( vec4 p )
{
    p = invProj * p;
    p /= p.w;
    return p;
}

// calculate the number of tiles in the horizontal direction
uint GetNumTilesX()
{
    return uint(( ( 1280 + WORK_GROUP_SIZE - 1 ) / float(WORK_GROUP_SIZE) ));
}

// calculate the number of tiles in the vertical direction
uint GetNumTilesY()
{
    return uint(( ( 720 + WORK_GROUP_SIZE - 1 ) / float(WORK_GROUP_SIZE) ));
}


vec4 CreatePlaneEquation( vec4 b, vec4 c )
{
    vec4 n;

    // normalize(cross( b.xyz-a.xyz, c.xyz-a.xyz )), except we know "a" is the origin
     n.xyz = normalize(cross( b.xyz, c.xyz ));

    // -(n dot a), except we know "a" is the origin
    n.w = 0;

    return n;
}

float GetSignedDistanceFromPlane( vec4 p, vec4 eqn )
{
    // dot( eqn.xyz, p.xyz ) + eqn.w, , except we know eqn.w is zero 
    // (see CreatePlaneEquation above)
    return dot( eqn.xyz, p.xyz );
}

vec4 CalculateLighting( PointLight p, vec3 wPos, vec3 wNormal, vec4 wSpec, vec4 wGlow)
{
    vec3 direction = p.position - wPos;

    if(length(direction) > p.radius)
        return vec4(0.0f, 0.0f, 0.0f, 0.0f);

    float attenuation = 1.0f - length(direction) / (p.radius);
    direction = normalize(direction);
    float diffuseFactor = max(0.0f, dot(direction, wNormal)) * attenuation;
    return vec4(p.color.xyz, 0.0f) * diffuseFactor * p.intensity;
}


void main()
{
        ivec2 pixelPos = ivec2(gl_GlobalInvocationID.xy);
        vec2 tilePos = vec2(gl_WorkGroupID.xy * gl_WorkGroupSize.xy) / vec2(1280, 720);

        vec4 normalColor = imageLoad(normalDepth, pixelPos);

        float d = normalColor.w;

        uint depth = uint(d * 0xFFFFFFFF);

        atomicMin(minDepth, depth);
        atomicMax(maxDepth, depth);

        barrier();

        float minDepthZ = float(minDepth / float(0xFFFFFFFF));
        float maxDepthZ = float(maxDepth / float(0xFFFFFFFF));

        vec4 frustumEqn[4];
        uint pxm = WORK_GROUP_SIZE * gl_WorkGroupID.x;
        uint pym = WORK_GROUP_SIZE * gl_WorkGroupID.y;
        uint pxp = WORK_GROUP_SIZE * (gl_WorkGroupID.x + 1);
        uint pyp = WORK_GROUP_SIZE * (gl_WorkGroupID.y + 1);

        uint uWindowWidthEvenlyDivisibleByTileRes = WORK_GROUP_SIZE * GetNumTilesX();
        uint uWindowHeightEvenlyDivisibleByTileRes = WORK_GROUP_SIZE * GetNumTilesY();

        vec4 frustum[4];
        frustum[0] = ConvertProjToView( vec4( pxm / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pym) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );
        frustum[1] = ConvertProjToView( vec4( pxp / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pym) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );
        frustum[2] = ConvertProjToView( vec4( pxp / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pyp) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f ,1.0f) );
        frustum[3] = ConvertProjToView( vec4( pxm / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pyp) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );

        for (int i = 0; i < 4; i++)
            frustumEqn[i] = CreatePlaneEquation(frustum[i], frustum[(i+1) & 3]);

        barrier();

        int threadsPerTile = WORK_GROUP_SIZE * WORK_GROUP_SIZE;

        for (uint i = 0; i < MAX_LIGHTS; i+= threadsPerTile)
        {
            uint il = gl_LocalInvocationIndex + i;

            if (il < MAX_LIGHTS)
            {
                PointLight p = pointLights[il];

                vec4 viewPos = view * vec4(p.position, 1.0f);
                float r = p.radius;

                if (viewPos.z + minDepthZ < r && viewPos.z - maxDepthZ < r)
                {

                if( ( GetSignedDistanceFromPlane( viewPos, frustumEqn[0] ) < r ) &&
                    ( GetSignedDistanceFromPlane( viewPos, frustumEqn[1] ) < r ) &&
                    ( GetSignedDistanceFromPlane( viewPos, frustumEqn[2] ) < r ) &&
                    ( GetSignedDistanceFromPlane( viewPos, frustumEqn[3] ) < r) )

                    {
                        uint id = atomicAdd(pointLightCount, 1);
                        pointLightIndex[id] = il;
                    }
                }

            }
        }

        barrier();

        vec4 diffuseColor = imageLoad(diffuse, pixelPos);
        vec4 specularColor = imageLoad(specular, pixelPos);
        vec4 glowColor = imageLoad(glowMatID, pixelPos);

        vec2 uv = vec2(pixelPos.x / 1280.0f, pixelPos.y / 720.0f);

        vec3 wp = ReconstructWP(d, uv);
        vec4 color = vec4(0.0f, 0.0f, 0.0f, 1.0f);

        for (int i = 0; i < pointLightCount; i++)
        {
            color += CalculateLighting( pointLights[pointLightIndex[i]], wp, normalColor.xyz, specularColor, glowColor);
        }

        barrier();

        if (gl_LocalInvocationID.x == 0 || gl_LocalInvocationID.y == 0 || gl_LocalInvocationID.x == 16 || gl_LocalInvocationID.y == 16)
            imageStore(outTexture, pixelPos, vec4(.2f, .2f, .2f, 1.0f));
        else
        {
            imageStore(outTexture, pixelPos, color);
            //imageStore(outTexture, pixelPos, vec4(maxDepthZ));
            //imageStore(outTexture, pixelPos, vec4(pointLightCount / 128.0f));
            //imageStore(outTexture, pixelPos, vec4(vec2(tilePos.xy), 0.0f, 1.0f));
        }
}

Myślę, że jest to część problemu, część polegająca na ubijaniu:

        barrier();

    float minDepthZ = float(minDepth / float(0xFFFFFFFF));
    float maxDepthZ = float(maxDepth / float(0xFFFFFFFF));

    vec4 frustumEqn[4];
    uint pxm = WORK_GROUP_SIZE * gl_WorkGroupID.x;
    uint pym = WORK_GROUP_SIZE * gl_WorkGroupID.y;
    uint pxp = WORK_GROUP_SIZE * (gl_WorkGroupID.x + 1);
    uint pyp = WORK_GROUP_SIZE * (gl_WorkGroupID.y + 1);

    uint uWindowWidthEvenlyDivisibleByTileRes = WORK_GROUP_SIZE * GetNumTilesX();
    uint uWindowHeightEvenlyDivisibleByTileRes = WORK_GROUP_SIZE * GetNumTilesY();

    vec4 frustum[4];
    frustum[0] = ConvertProjToView( vec4( pxm / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pym) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );
    frustum[1] = ConvertProjToView( vec4( pxp / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pym) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );
    frustum[2] = ConvertProjToView( vec4( pxp / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pyp) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f ,1.0f) );
    frustum[3] = ConvertProjToView( vec4( pxm / float(uWindowWidthEvenlyDivisibleByTileRes) * 2.0f - 1.0f, (uWindowHeightEvenlyDivisibleByTileRes - pyp) / float(uWindowHeightEvenlyDivisibleByTileRes) * 2.0f - 1.0f, 1.0f, 1.0f) );

    for (int i = 0; i < 4; i++)
        frustumEqn[i] = CreatePlaneEquation(frustum[i], frustum[(i+1) & 3]);

    barrier();

    int threadsPerTile = WORK_GROUP_SIZE * WORK_GROUP_SIZE;

    for (uint i = 0; i < MAX_LIGHTS; i+= threadsPerTile)
    {
        uint il = gl_LocalInvocationIndex + i;

        if (il < MAX_LIGHTS)
        {
            PointLight p = pointLights[il];

            vec4 viewPos = view * vec4(p.position, 1.0f);
            float r = p.radius;

            if (viewPos.z + minDepthZ < r && viewPos.z - maxDepthZ < r)
            {

            if( ( GetSignedDistanceFromPlane( viewPos, frustumEqn[0] ) < r ) &&
                ( GetSignedDistanceFromPlane( viewPos, frustumEqn[1] ) < r ) &&
                ( GetSignedDistanceFromPlane( viewPos, frustumEqn[2] ) < r ) &&
                ( GetSignedDistanceFromPlane( viewPos, frustumEqn[3] ) < r) )

                {
                    uint id = atomicAdd(pointLightCount, 1);
                    pointLightIndex[id] = il;
                }
            }

        }
    }

    barrier();

Dziwne jest to, że kiedy wizualizuję liczbę świateł na płytkę, pokazuje ona wszystkie płytki posiadające jakiś rodzaj świateł (pierwszy obraz).

Drugi obraz pokazuje ostateczną moc wyjściową, cienką linię świateł na środku ekranu i nic powyżej lub poniżej. Usunięcie cullingu (GetSignedDistanceFromPlane ()) daje pożądany rezultat, choć mój framerate spada jak kamień.

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

Domyślam się, że frustum jest źle skonstruowane, ale nie jestem pewien, czy za tym stoi matematyka i przydałaby mi się pomoc.

Edycja: Dodano kolejny obraz, który pokazuje oczekiwany wynik.

wprowadź opis zdjęcia tutaj

AKTUALIZACJA 1

Zmieniliśmy sposób wykonywania ubijania, kod wygląda teraz tak:

barrier();

float minDepthZ = float(minDepth / float(0xFFFFFFFF));
float maxDepthZ = float(maxDepth / float(0xFFFFFFFF));

//total tiles = tileScale * 2
vec2 tileScale = vec2(1280, 720) * (1.0f / float(2*WORK_GROUP_SIZE));
vec2 tileBias = tileScale - vec2(gl_WorkGroupID.xy);

vec4 c1 = vec4(-proj[0][0] * tileScale.x, 0.0f, tileBias.x, 0.0f);
vec4 c2 = vec4(0.0f, -proj[1][1] * tileScale.y, tileBias.y, 0.0f);
vec4 c4 = vec4(0.0f, 0.0f, 1.0f, 0.0f);

 // Derive frustum planes
vec4 frustumPlanes[6];
// Sides
//right
frustumPlanes[0] = c4 - c1;
//left
frustumPlanes[1] = c4 + c1;
//bottom
frustumPlanes[2] = c4 - c2;
//top
frustumPlanes[3] = c4 + c2;
// Near/far
frustumPlanes[4] = vec4(0.0f, 0.0f,  1.0f, -minDepthZ);
frustumPlanes[5] = vec4(0.0f, 0.0f, -1.0f,  maxDepthZ);

for(int i = 0; i < 4; i++)
{
    frustumPlanes[i] *= 1.0f / length(frustumPlanes[i].xyz);
}

//DO CULLING HERE
for (uint lightIndex = gl_LocalInvocationIndex; lightIndex < numActiveLights; lightIndex += WORK_GROUP_SIZE)
{
    PointLight p = pointLights[lightIndex];

    if (lightIndex < numActiveLights)
    {
        bool inFrustum = true;
        for (uint i = 0; i < 4; i++)
        {
            float dd = dot(frustumPlanes[i], view * vec4(p.position, 1.0f));
            inFrustum = inFrustum && (dd >= -p.radius_length);
        }

        if (inFrustum)
        {
            uint id = atomicAdd(pointLightCount, 1);
            pointLightIndex[id] = lightIndex;
        }
    }
}

barrier();

Działa to lepiej, nasze światła są teraz odpowiednio wyrównywane (oprócz minimalnej / maksymalnej głębokości, ponieważ nie zostały jeszcze odpowiednio zaimplementowane) na naszych kafelkach. Jak dotąd tak dobrze, ALE! Mamy problem z krawędziami świateł, płytki nie pokrywają całego promienia światła, a wydajność jest cholerna. 1024 światła dają co najwyżej 40 klatek na sekundę z tonami jąkania.

Ten film pokazuje, co dzieje się na krawędziach, szare kafelki są tym, na które kafelki wpływa światło (pojedyncze światło punktowe), a czerwone części są cieniowaną geometrią.

http://www.youtube.com/watch?v=PiwGcFb9rWk&feature=youtu.be

Skalowanie promienia, aby był większy, gdy wygładzanie „działa”, ale jeszcze bardziej obniża wydajność.

Odpowiedzi:


5

Ostateczna odpowiedź, rozwiązany problem wydajności! Zamiast tego zmieniłem na to moją pętlę uboju (na podstawie tej używanej przez Dice w BF3)

uint threadCount = WORK_GROUP_SIZE * WORK_GROUP_SIZE;
    uint passCount = (numActiveLights + threadCount - 1) /threadCount;
for (uint passIt = 0; passIt < passCount; ++passIt)
{
    uint lightIndex =  passIt * threadCount + gl_LocalInvocationIndex;

    lightIndex = min(lightIndex, numActiveLights);

    p = pointLights[lightIndex];
    pos = view * vec4(p.position, 1.0f);
    rad = p.radius_length;

    if (pointLightCount < MAX_LIGHTS_PER_TILE)
    {
        inFrustum = true;
        for (uint i = 3; i >= 0 && inFrustum; i--)
        {
            dist = dot(frustumPlanes[i], pos);
            inFrustum = (-rad <= dist);
        }

        if (inFrustum)
        {
            id = atomicAdd(pointLightCount, 1);
            pointLightIndex[id] = lightIndex;
        }
    }
}

Mogę teraz zrobić 4096 świateł przy 80 fps, jestem więcej niż szczęśliwy.


2

Częściowo rozwiązałem problem. To jest nowy kod culling, który działa na wszystko oprócz dalekiego i bliskiego samolotu. Wydajność jest nadal dość zła, więc jeśli ktokolwiek zobaczy, co może spowodować, że zostanie to docenione.

        ivec2 pixel = ivec2(gl_GlobalInvocationID.xy);

    vec4 normalColor = imageLoad(normalDepth, pixel);

    float d = normalColor.w;

    uint depth = uint(d * 0xFFFFFFFF);

    atomicMin(minDepth, depth);
    atomicMax(maxDepth, depth);

    barrier();

    float minDepthZ = float(minDepth / float(0xFFFFFFFF));
    float maxDepthZ = float(maxDepth / float(0xFFFFFFFF));

    vec2 tileScale = vec2(1280, 720) * (1.0f / float( 2 * WORK_GROUP_SIZE));
    vec2 tileBias = tileScale - vec2(gl_WorkGroupID.xy);

    vec4 col1 = vec4(-proj[0][0]  * tileScale.x, proj[0][1], tileBias.x, proj[0][3]); 

    vec4 col2 = vec4(proj[1][0], -proj[1][1] * tileScale.y, tileBias.y, proj[1][3]);

    vec4 col4 = vec4(proj[3][0], proj[3][1],  -1.0f, proj[3][3]); 

    vec4 frustumPlanes[6];

    //Left plane
    frustumPlanes[0] = col4 + col1;

    //right plane
    frustumPlanes[1] = col4 - col1;

    //top plane
    frustumPlanes[2] = col4 - col2;

    //bottom plane
    frustumPlanes[3] = col4 + col2;

    //near
    frustumPlanes[4] =vec4(0.0f, 0.0f, -1.0f,  -minDepthZ);

    //far
    frustumPlanes[5] = vec4(0.0f, 0.0f, -1.0f,  maxDepthZ);

    for(int i = 0; i < 4; i++)
    {
        frustumPlanes[i] *= 1.0f / length(frustumPlanes[i].xyz);
    }

    //DO CULLING HERE
    for (uint lightIndex = gl_LocalInvocationIndex; lightIndex < numActiveLights; lightIndex += WORK_GROUP_SIZE)
    {
        PointLight p = pointLights[lightIndex];

        if (pointLightCount < MAX_LIGHTS_PER_TILE)
        {
            bool inFrustum = true;
            for (uint i = 3; i >= 0 && inFrustum; i--)
            {
                float dd = dot(frustumPlanes[i], view * vec4(p.position, 1.0f));
                inFrustum = (dd >= -p.radius_length);
            }

            if (inFrustum)
            {
                uint id = atomicAdd(pointLightCount, 1);
                pointLightIndex[id] = lightIndex;
            }
        }
    }

    barrier();

W akcji:

http://www.youtube.com/watch?v=8SnvYya1Jn8&feature=youtu.be


1
Mam trochę doświadczenia we wdrażaniu renderowania / odroczenia indeksowanego światłem. Jeśli chodzi o krawędzie świateł, możesz rzucić okiem na imdoingitwrong.wordpress.com/2011/01/31/light-attenuation. Pozwala to określić próg odcięcia świateł i daje równanie do obliczenia skala, którą przekazujesz do modułu cieniującego. Jeśli chodzi o bliskie i dalekie samoloty, miałem dużo problemów z indeksowaniem światła. Najlepszą metodą, jaką znalazłem, było zrobienie całego ekranu dla świateł przecinających bliski samolot. Co do dalekiej płaszczyzny, możesz zajrzeć do mocowania głębokości (GL_ARB_depth_clamp)
ashleysmithgpu

1
Przepraszamy, za mało miejsca :). Jeśli chodzi o wydajność, prawdopodobnie chcesz profilować swoją aplikację. Wyobrażam sobie przeniesienie obliczeń oświetlenia do wnętrza testu if (inFrustum), ponieważ unikniesz konieczności zapisywania w pamięci, zapętlania i czytania z pamięci w celu obliczenia oświetlenia.
ashleysmithgpu,

Dzięki za pomoc! Próbowałem przeprowadzić profilowanie i jest to etap wyciszania, który obecnie zabija wydajność. W szczególności wydaje się, że pisze do inFrustum (inFrustum = (dd> = -p.radius_length); z jakiegoś powodu absolutnie morduje wydajność i nie mam pojęcia dlaczego? Powinien być w lokalnej pamięci i nie być dzielony między wątkami, myślę, że może to być powoduje nadmierne rozgałęzienia? Nie do końca pewny, jak przenieść obliczenie światła do warunku if (inFrustum), ponieważ każdy wątek potrzebuje pełnej listy świateł?
Bentebent,
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.