2
Jak zaimplementować prognozowanie sekwencji „jeden do wielu” i „wiele do wielu” w Keras?
Mam problem z interpretacją różnicy kodowania Keras dla znakowania sekwencji jeden do wielu (np. Klasyfikacja pojedynczych obrazów) i wiele do wielu (np. Klasyfikacja sekwencji obrazów). Często widzę dwa różne rodzaje kodów: Typ 1 to miejsce, w którym nie zastosowano takiego podziału czasu: model=Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode="valid", input_shape=[1, 56,14])) model.add(Activation("relu")) …