Układanie siatki 2 ^ N na 2 ^ N siatki za pomocą puzonów w kształcie litery L


14

Kiedy uczniowie najpierw uczy o lustrzanym techniki indukcji , typowym przykładem jest problem płytki do 2 N x 2 N siatkę o kształcie litery L trominoes , pozostawiając jedną określoną przestrzeń siatki pusty. (N jest jakąś nieujemną liczbą całkowitą).

Pozostawiam tobie przejrzenie dowodu, jeśli jeszcze go nie znasz. Istnieje wiele zasobów, które to omawiają.

Twoim zadaniem tutaj jest napisanie programu, który przyjmuje wartość N, a także współrzędne przestrzeni siatki, aby pozostawić puste, i drukuje reprezentację ASCII wynikowej siatki kafelkowej Tromino.

Postać Owypełni puste miejsce, a 4 obroty naszego tromino będą wyglądały następująco:

|
+-

 |
-+

-+
 |

+-
|

(Tak, to może być dwuznaczne, +z którym -i |dla niektórych uzgodnień, ale to jest ok.)

Twój program musi działać dla N = 0 (dla siatki 1 × 1) do co najmniej N = 8 (dla siatki 256 × 256). Otrzymają wartości xiy, które są współrzędnymi dla O:

  • x jest osią poziomą. x = 1 to lewa krawędź siatki, x = 2 N to prawa krawędź siatki.
  • y jest osią pionową. y = 1 to górna krawędź siatki, y = 2 N to dolna krawędź siatki.

Zarówno xiy są zawsze w zakresie [1, 2 N ].

Tak więc dla danego N, x i y twój program musi wydrukować siatkę 2 N × 2 N , wyłożoną kafelkami całkowicie za pomocą puzonów w kształcie litery L, z wyjątkiem współrzędnej siatki x, y, która będzie O.

Przykłady

Jeśli N = 0, wówczas xiy muszą być równe 1. Wynik jest prosty

O

Jeśli N = 1, x = 1, ay = 2, wynikiem będzie

-+
O|

N = 2, x = 3, y = 2:

+--+
||O|
|+-|
+--+

N = 2, x = 4, y = 1:

+-|O
||+-
|+-|
+--+

N = 3, x = 3, y = 6 (np. Obraz na tej stronie ):

+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+

Detale

  • Możesz napisać funkcję, która przyjmuje 3 liczby całkowite zamiast pisać cały program. Powinien wydrukować lub zwrócić ciąg siatki.
  • Weź dane wejściowe ze stdin, wiersza poleceń (lub argumentów funkcji, jeśli piszesz funkcję).
  • Dane wyjściowe mogą opcjonalnie zawierać jeden nowy wiersz szkolenia.
  • Nie jest wymagane stosowanie metody układania płytek, którą zwykle sugeruje dowód. Ważne jest tylko to, że siatka jest wypełniona puzonami w kształcie litery L oprócz O. (Puzonów nie można wycinać ani wychodzić poza granice siatki).

Najkrótszy kod w bajtach wygrywa. Tiebreaker jest wcześniejszym postem. ( Poręczny licznik bajtów. )

Odpowiedzi:


2

Haskell, 250 240 236 bajtów

c=cycle
z o(#)(x,y)=zipWith o(1#x)(2#y)
f n x y=unlines$(z(+)(\m w->[c[0,m]!!div(w-1)(2^(n-k))|k<-[1..n]])(x,y),"O")%n
(_,x)%0=[x]
((p:o),x)%k=z(++)(\_ q->((o,x):c[(c[3-q],[" |-+| +--+ |+-|"!!(4*p+q)])])!!abs(p-q)%(k-1))=<<[(0,1),(2,3)]

Wynika to ściśle z indukcyjnego rozwiązania problemu. Punkt do oznaczenia jest reprezentowany przez ciąg liczb od 0 do 3, które wskazują, która ćwiartka utrzymuje punkt na każdym poziomie powiększenia; jest to początkowo obliczane przez wyrażenie zaczynające się od z (+). Operator (%) łączy zdjęcia czterech ćwiartek w jeden obraz. Zdjęcia nieoznakowanych ćwiartek są generowane przez narysowanie zaznaczonych ćwiartek ze znakiem gdzieś w pobliżu środka, narysowanych znakiem „+ - |” odpowiednio do budowy środkowej płytki L.

Zabawny biznes: z powodów golfowych podwyrażenie

\m w->[c[0,m]!!div(w-1)(2^(n-k))|k<-[1..n]]

(który mniej więcej oblicza sekwencję bitów dla liczby) jest przezabawnie nieefektywny --- określa, czy w / 2 ^ p jest nieparzyste, czy nawet patrząc na (w / 2 ^ p) th element listy.

Edycja: Zapisano 10 bajtów, wstawiając obliczenia bitowe i zastępując if / then / else operacją indeksowania.

Edycja2: Zapisano cztery kolejne bajty, przełączając funkcję z powrotem na operatora. @randomra, wyścig się rozpoczął!

Próbny:

λ> putStr $ f 4 5 6
+--++--++--++--+
|+-||-+||+-||-+|
||+--+||||+--+||
+-|+-|-++-|-+|-+
+-||-+-++--+||-+
||+-O||||-+|-+||
|+-||-+|-+|||-+|
+--++--+||-++--+
+--++-|-+|-++--+
|+-|||+--+|||-+|
||+-|+-||-+|-+||
+-||+--++--+||-+
+-|+-|-++-|-+|-+
||+--+||||+--+||
|+-||-+||+-||-+|
+--++--++--++--+

8

C, 399 bajtów

char*T=" |-+ | +-| ",*B;w;f(N,x,y,m,n,F,h,k,i,j){w=B?F=0,w:1<<N|1;char b[N?w*w:6];for(k=w;k--;)b[k*w-1]=10;B=!B?F=1,m=0,n=0,x--,y--,b:B;if(N>1){h=1<<N-1;i=x>--h,j=y>h;while(++k<4)if(k%2-i||k/2-j)f(N-1,!(k%2)*h,!(k/2)*h,m+k%2*(h+1),n+k/2*(h+1));f(1,h&i,h&j,m+h,n+h);h++;f(N-1,x-h*i,y-h*j,m+h*i,n+h*j);}else while(++k<4)B[w*(n+k/2)+m+k%2]=T[5*x+2*y+k];if(F)B[y*w+x]=79,B[w*w-w-1]=0,puts(N?B:"O"),B=0;}

Nikt jeszcze się nie zgłosił, więc zaproponuję skromne rozwiązanie. Zaznacz moje słowa, to nie koniec. To się skróci.

Definiujemy funkcję, fktóra pobiera 10 argumentów, ale wystarczy ją wywołać za pomocą f(N, X, Y). Wyjście przechodzi na standardowe wyjście.

Oto czytelna wersja:

char*T=" |-+ | +-| ",*B;
w;
f(N,x,y,m,n,F,h,k,i,j){
    w=B?F=0,w:1<<N|1;
    char b[N?w*w:6];
    for(k=w;k--;)
        b[k*w-1]=10;
    B=!B?F=1,m=0,n=0,x--,y--,b:B;
    if(N>1){
        h=1<<N-1;
        i=x>--h,j=y>h;
        while(++k<4)
            if(k%2-i||k/2-j)
                f(N-1,!(k%2)*h,!(k/2)*h,m+k%2*(h+1),n+k/2*(h+1));
        f(1,h&i,h&j,m+h,n+h);
        h++;
        f(N-1,x-h*i,y-h*j,m+h*i,n+h*j);
    }
    else
        while(++k<4)
            B[w*(n+k/2)+m+k%2]=T[5*x+2*y+k];
    if(F)B[y*w+x]=79,B[w*w-w-1]=0,puts(N?B:"O"),B=0;
}

Smak wyjściowy dla f(3, 2, 7):

+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
|-+|-+||
|O|||-+|
+--++--+

Jest to dość prosty algorytm rekurencyjny do wypełnienia siatki. Mogę załadować animację algorytmu rysującego puzony, ponieważ uważam, że jest całkiem fajny. Jak zwykle nie krępuj się zadawać pytania i krzyczeć na mnie, jeśli mój kod się zepsuje!

Wypróbuj online !


8

Python 3, 276 265 237 bajtów

Mój pierwszy golf w Python, więc jestem pewien, że jest wiele do zrobienia.

def f(n,x,y,c='O'):
 if n<1:return c
 *t,l,a='x|-+-|',2**~-n;p=(a<x)+(a<y)*2
 for i in 0,1,2,3:t+=(p-i and f(n-1,1+~i%2*~-a,1+~-a*(1-i//2),l[p+i])or f(n-1,1+~-x%a,1+~-y%a,c)).split(),
 u,v,w,z=t;return'\n'.join(map(''.join,zip(u+w,v+z)))

10 bajtów zapisanych dzięki @xnor i 6 dodatkowych bajtów dzięki @ Sp3000.

Funkcja zwraca ciąg znaków. Przykładowe użycie:

>>>print(f(3,3,6))    
+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+

1
Imponujący pierwszy bieg w golfie Python! Kilka szybkich zapisów. Możesz wcześniej wyciąć przestrzeń if p!=i; lista w środku .join()nie potrzebuje []; (1-i%2)można to zrobić jako ~i%2; możesz użyć iterowalnego rozpakowywania do pisania t,l,a=[],...jako *t,l,a=...; if n==0można zaznaczyć jako, if n<1ponieważ nnie może być ujemny; finału "\n".joinmożna prawdopodobnie dokonać poprzez wydrukowanie każdego elementu, ponieważ ogólne zasady zezwalają na drukowanie zamiast zwrotu; if p!=imoże być, if p-iponieważ niezerowe wartości są prawdziwe.
xnor

@xnor Dzięki za wskazówki! Rozpakowanie w celu uzyskania niejawnej pustej listy jest bardzo miłe. Używam return zamiast print, ponieważ fjest to funkcja rekurencyjna. Właściwie muszę przywrócić formatowanie wyjściowe split()po każdym samodzielnym wywołaniu.
randomra

Jeszcze kilka: ostatni wiersz można zapisać jako A,B,C,D=t;return'\n'.join(map("".join,zip(A+C,B+D))), t+=[...]w drugim przedostatnim wierszu można zapisać jako t+=...,(dodanie krotki zamiast listy) i nie jestem pewien, czy ten działa, ale A if B else Cmoże być zapisany jako B and A or C(również w drugi-ostatni wiersz), ale tylko wtedy, gdy A nigdy nie jest fałszem (co chyba nie jest?)
Sp3000,

4

JavaScript (ES6) 317 414

Dużo pracy w golfa, ale wciąż dość długo.

T=(b,x,y)=>
  (F=(d,x,y,f,t=[],q=y<=(d>>=1)|0,
      b=d?x>d
       ?q
         ?F(d,x-d,y,0,F(d,1,1,2))
         :F(d,1,d,2,F(d,x-d,y-d))
       :F(d,1,d,1-q,F(d,1,1,q)):0,
      r=d?(x>d
         ?F(d,d,d,1-q,F(d,d,1,q))
         :q
           ?F(d,x,y,1,F(d,d,1,2))
           :F(d,d,d,2,F(d,x,y-d))
      ).map((x,i)=>x.concat(b[i])):[[]]
    )=>(r[y-1][x-1]='|+-O'[f],r.concat(t))
  )(1<<b,x,y,3).join('\n').replace(/,/g,'')

Uruchom snippet, aby przetestować (lepiej wyglądać przy użyciu znaków blokowych Unicode - ale nawet nieco dłużej)


1

IDL 8.3+, 293 bajty

To za długo, staram się to ograniczyć, ale jeszcze tam nie dotarłem.

function t,n,x,y
m=2^n
c=['|','+','-']
b=replicate('0',m,m)
if m eq 1 then return,b
h=m/2
g=h-1
k=[1:h]
o=x gt h
p=y gt h
q=o+2*p
if m gt 2then for i=0,1 do for j=0,1 do b[i*h:i*h+g,j*h:j*h+g]=t(n-1,i+2*j eq q?x-i*h:k[i-1],i+2*j eq q?y-j*h:k[j-1])
b[g+[1-o,1-o,o],g+[p,1-p,1-p]]=c
return,b
end

Wyjścia:

IDL> print,t(1,1,2)
- +
0 |
IDL> print,t(2,3,2)
+ - - +
| | 0 |
| + - |
+ - - +
IDL> print,t(2,4,1)
+ - | 0
| | + -
| + - |
+ - - +
IDL> print,t(3,3,6)
+ - - + + - - +
| + - | | - + |
| | + - - + | |
+ - | - + | - +
+ - - + | | - +
| | 0 | - + | |
| + - | | - + |
+ - - + + - - +

I ... tylko dla zabawy ...

IDL> print,t(6,8,9)
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | |
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - +
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - +
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | |
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + |
+ - - + + - | - + | - + + - - + + - - + + - | - + | - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - +
+ - - + + - | 0 | | - + + - - + + - - + + - - + | | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - +
| + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + |
| | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - +
| | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | |
| + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - +
| + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + |
| | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | |
+ - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - +
+ - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - +
| | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | |
| + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + |
+ - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - +
+ - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - +
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + |
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - +
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | |
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
| | + - - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - - + | |
+ - | + - | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | - + | - +
+ - | | + - - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - - + | | - +
| | + - | + - | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | - + | - + | |
| + - | | | + - - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - - + | | | - + |
+ - - + + - | + - | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | - + | - + + - - +
+ - - + + - | | + - - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - - + | | - + + - - +
| + - | | | + - | + - | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | - + | - + | | | - + |
| | + - | + - | | | + - - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - - + | | | - + | - + | |
+ - | | + - - + + - | + - | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | - + | - + + - - + | | - +
+ - | + - | - + + - | | + - - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - - + | | - + + - | - + | - +
| | + - - + | | | | + - | + - | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | - + | - + | | | | + - - + | |
| + - | | - + | | + - | | | + - | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | - + | | | - + | | + - | | - + |
+ - - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - - +
+ - - + + - - + + - - + + - | + - | - + + - - + + - - + + - - + + - - + + - - + + - - + + - | - + | - + + - - + + - - + + - - +
| + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + | | + - | | - + | | + - | | | + - - + | | | - + | | + - | | - + |
| | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | | | | + - - + | | | | + - | + - | | - + | - + | | | | + - - + | |
+ - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - + + - | + - | - + + - | | + - - + + - - + | | - + + - | - + | - +
+ - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - + + - | | + - - + + - | + - | - + + - | - + | - + + - - + | | - +
| | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | | | | + - | + - | | | + - - + | | | | + - - + | | | - + | - + | |
| + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + | | + - | | | + - | + - | | - + | | + - | | - + | - + | | | - + |
+ - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - + + - - + + - | | + - - + + - - + + - - + + - - + | | - + + - - +
+ - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - + + - - + + - | + - | - + + - - + + - - + + - | - + | - + + - - +
| + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + | | + - | | | + - - + | | | - + |
| | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | | | | + - | + - | | - + | - + | |
+ - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - + + - | | + - - + + - - + | | - +
+ - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - + + - | + - | - + + - | - + | - +
| | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | | | | + - - + | |
| + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + | | + - | | - + |
+ - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - +

0

Ruby Rev 1, 288

Jako anonimowy dosłowny lambda. Pokazane w programie testowym (literał lambda to ->(n,a,b){...})

g=
->(n,a,b){
$x=a-1
$y=b-1
$a=Array.new(m=2**n){"|"*m}
def t(u,v,m,r,f)
(m/=2)==1?$a[v+1-r/2%2][u,2]='-+-'[r%2,2]:0
if m>1 
4.times{|i|i==r ?t(u+m/2,v+m/2,m,r,0):t(u+i%2*m,v+i/2*m,m,3-i,0)}
f>0?t(u+r%2*m,v+r/2*m,m,2*$x/m&1|$y*4/m&2,1):0
end
end
t(0,0,m,2*$x/m|$y*4/m,1) 
$a[$y][$x]='O'
$a
}

n=gets.to_i
a=gets.to_i
b=gets.to_i
puts(g.call(n,a,b))

Ruby Rev 0, 330 bez golfa

Obecnie jedyne, o co twierdzę, to eliminacja komentarzy, niepotrzebnych nowych linii i wcięć.

To jest mój pierwszy właściwy algorytm zakodowany w Rubim i to była ciężka praca. Jestem pewien, że jest co najmniej 50 znaków, których można wyeliminować, ale na razie zrobiłem wystarczająco dużo. Istnieją prawdziwe horrory, na przykład wejście. Prawdopodobnie można to naprawić za pomocą funkcji lub lambda zamiast programu, ale funkcja wewnętrzna, tktóra rysuje puzony, nadal potrzebuje dostępu do zmiennych globalnych. Muszę do tego wymyślić składnię.

Cechą mojej odpowiedzi, której nie ma w innych, jest to, że inicjuję tablicę ciągów |znaków. Oznacza to, że muszę tylko narysować +-lub -+, które są obok siebie na tej samej linii.

m=2**gets.to_i                                         #get n and store 2**n in m
$x=gets.to_i-1                                         #get x and y, and...
$y=gets.to_i-1                                         #convert from 1-indexed to 0-indexed
$a=Array.new(m){"|"*m}                                 #array of m strings length m, initialized with "|"

def t(u,v,m,r,f)                                       #u,v=top left of current field. r=0..3= quadrant containing O. f=flag to continue surrounding O
  m/=2
  if m==1 then $a[v+1-r/2%2][u,2] ='-+-'[r%2,2];end    #if we are at char level, insert -+ or +- (array already initialized with |'s)
  if m>1 then                                          #at higher level, 4 recursive calls to draw trominoes of next size down 
    4.times{|i| i==r ? t(u+m/2,v+m/2,m,r,0):t(u+i%2*m,v+i/2*m,m,3-i,0)}
    f>0?t(u+r%2*m,v+r/2*m,m,2*$x/m&1|$y*4/m&2,1):0     #then one more call to fill in the empty quadrant (this time f=1)
  end
end

$a[$y][$x]='O'                                         #fill in O
t(0,0,m,2*$x/m&1|$y*4/m&2,1)                           #start call. 2*x/m gives 0/1 for left/right quadrant, similarly 4*y/m gives 0/2 for top/bottom 

puts $a                                                #dump array to stdout, elements separated by newlines.

0

Haskell, 170 bajtów

r=reverse
g n s x y|n<1=[s]|x>k=r<$>g n s(2^n+1-x)y|y>k=r$g n s x$2^n+1-y|0<1=zipWith(++)(h s x y++h"-"k 1)$h"|"1 k++h"+"1 1 where m=n-1;k=2^m;h=g m
f n x=unlines.g n"O"x

Uruchom online w Ideone

Przykładowy przebieg:

*Main> putStr(f 3 3 6)
+--++--+
|+-||-+|
||+--+||
+-|-+|-+
+--+||-+
||O|-+||
|+-||-+|
+--++--+
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.