Wypaczona szachownica


20

Wyzwanie polega na zbudowaniu szachownicy, w której rozmiar kwadratu, zamiast być stały na całej planszy, odbywa się w pewnej nie malejącej sekwencji, jak opisano poniżej.

Tablica jest definiowana iteracyjnie. Tablica o rozmiarze n×n jest powiększana do rozmiaru (n+k)×(n+k) poprzez przedłużenie jej w dół i w prawo o „warstwę” kwadratów o rozmiarze k , gdzie k jest największym dzielnikiem n nie przekraczający n . Kwadraty po przekątnej są zawsze tego samego koloru.

W szczególności rozważ tablicę z kolorami przedstawionymi jako #i +.

  1. Zainicjuj szachownicę do

    #
    
  2. Tablica do tej pory ma rozmiar 1×1 . Jedynym dzielnikiem 1 jest 1 i nie przekracza ona 1 . Więc bierzemyk=1i przedłużamy planszę, dodając warstwę kwadratów o rozmiarze1, z#przekątną:

    #+
    +#
    
  3. Dotychczas zbudowana plansza ma wymiary 2×2 . Dzielnikami 21,2 , a maksymalny dzielnik nieprzekraczający 2 to1. Więc znowuk=1, a tablica jest przedłużana do

    #+#
    +#+
    #+#
    
  4. Rozmiar to 3×3 . k=1 . Rozszerz do

    #+#+
    +#+#
    #+#+
    +#+#
    
  5. Rozmiar to 4×4 . Teraz k=2 , ponieważ 2 jest maksymalnym dzielnikiem 4 nieprzekraczającym 4 . Przedłużyć warstwą o grubości2, utworzoną z kwadratów o wymiarach2×2, z kolorem#po przekątnej:

    #+#+##
    +#+###
    #+#+++
    +#+#++
    ##++##
    ##++##
    
  6. Rozmiar to 6×6 . Teraz k=2 . Rozszerz do rozmiaru 8×8 . Teraz k=2 . Rozszerz do rozmiaru 10×10 . Teraz k=2 . Rozszerz do rozmiaru 12×12 . Teraz k=3 . Rozszerz do rozmiaru 15 :

    #+#+##++##++###
    +#+###++##++###
    #+#+++##++#####
    +#+#++##++##+++
    ##++##++##+++++
    ##++##++##+++++
    ++##++##++#####
    ++##++##++#####
    ##++##++##++###
    ##++##++##+++++
    ++##++##++##+++
    ++##++##++##+++
    ###+++###+++###
    ###+++###+++###
    ###+++###+++###
    

Zwróć uwagę, że ostatnio dodane kwadraty o rozmiarze 3×3 mają boki częściowo pokrywające się z bokami poprzednio dodanych kwadratów o rozmiarze 2×2 .

Sekwencja utworzona przez wartości k nie zmniejsza się:

1 1 1 2 2 2 2 3 3 3 3 4 4 4 6 6 6 6 6 6 ...

i nie wydaje się być w OEIS. Jednak jego skumulowana wersja, która jest sekwencją rozmiarów płyty, to A139542 (dzięki @Arnauld za zauważenie).

Wyzwanie

Dane wejściowe : dodatnia liczba całkowita S reprezentująca liczbę warstw na płycie. Jeśli wolisz, możesz również otrzymać S1 zamiast S jako dane wejściowe ( 0 zindeksowane); patrz poniżej.

Wyjście : ASCII-artystyczna reprezentacja tablicy z warstwami S

  • Dane wyjściowe mogą być przekazywane przez STDOUT lub argument zwracany przez funkcję. W tym przypadku może to być ciąg znaków z nowymi liniami, tablica znaków 2D lub tablica ciągów.

  • Możesz konsekwentnie wybierać dowolne dwie postacie do reprezentowania planszy.

  • Możesz konsekwentnie wybierać kierunek wzrostu. Oznacza to, że zamiast powyższych reprezentacji (które rosną w dół i w prawo), możesz wyprodukować dowolną z jej odbitych lub obróconych wersji.

  • Końcowe lub wiodące spacje są dozwolone (jeśli wyjście odbywa się poprzez STDOUT), o ile spacja nie jest jedną z dwóch postaci użytych na planszy.

  • 0S1S

Najkrótszy kod w bajtach wygrywa.

Przypadki testowe

1:

#

3:

#+#
+#+
#+#

5:

#+#+##
+#+###
#+#+++
+#+#++
##++##
##++##

6:

#+#+##++
+#+###++
#+#+++##
+#+#++##
##++##++
##++##++
++##++##
++##++##

10:

#+#+##++##++###+++
+#+###++##++###+++
#+#+++##++#####+++
+#+#++##++##+++###
##++##++##+++++###
##++##++##+++++###
++##++##++#####+++
++##++##++#####+++
##++##++##++###+++
##++##++##+++++###
++##++##++##+++###
++##++##++##+++###
###+++###+++###+++
###+++###+++###+++
###+++###+++###+++
+++###+++###+++###
+++###+++###+++###
+++###+++###+++###

15:

#+#+##++##++###+++###+++####++++####
+#+###++##++###+++###+++####++++####
#+#+++##++#####+++###+++####++++####
+#+#++##++##+++###+++#######++++####
##++##++##+++++###+++###++++####++++
##++##++##+++++###+++###++++####++++
++##++##++#####+++###+++++++####++++
++##++##++#####+++###+++++++####++++
##++##++##++###+++###+++####++++####
##++##++##+++++###+++#######++++####
++##++##++##+++###+++#######++++####
++##++##++##+++###+++#######++++####
###+++###+++###+++###+++++++####++++
###+++###+++###+++###+++++++####++++
###+++###+++###+++###+++++++####++++
+++###+++###+++###+++###++++####++++
+++###+++###+++###+++#######++++####
+++###+++###+++###+++#######++++####
###+++###+++###+++###+++####++++####
###+++###+++###+++###+++####++++####
###+++###+++###+++###+++++++####++++
+++###+++###+++###+++###++++####++++
+++###+++###+++###+++###++++####++++
+++###+++###+++###+++###++++####++++
####++++####++++####++++####++++####
####++++####++++####++++####++++####
####++++####++++####++++####++++####
####++++####++++####++++####++++####
++++####++++####++++####++++####++++
++++####++++####++++####++++####++++
++++####++++####++++####++++####++++
++++####++++####++++####++++####++++
####++++####++++####++++####++++####
####++++####++++####++++####++++####
####++++####++++####++++####++++####
####++++####++++####++++####++++####

25:

#+#+##++##++###+++###+++####++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
+#+###++##++###+++###+++####++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
#+#+++##++#####+++###+++####++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
+#+#++##++##+++###+++#######++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
##++##++##+++++###+++###++++####++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
##++##++##+++++###+++###++++####++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
++##++##++#####+++###+++++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
++##++##++#####+++###+++++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
##++##++##++###+++###+++####++++####++++++######++++++######++++++##############++++++++########++++++++########++++++++
##++##++##+++++###+++#######++++####++++++######++++++######++++++##############++++++++########++++++++########++++++++
++##++##++##+++###+++#######++++####++++++######++++++######++++++##############++++++++########++++++++########++++++++
++##++##++##+++###+++#######++++####++++++######++++++######++++++##############++++++++########++++++++########++++++++
###+++###+++###+++###+++++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
###+++###+++###+++###+++++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
###+++###+++###+++###+++++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
+++###+++###+++###+++###++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
+++###+++###+++###+++#######++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
+++###+++###+++###+++#######++++##########++++++######++++++######++++++++++++++########++++++++########++++++++########
###+++###+++###+++###+++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
###+++###+++###+++###+++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
###+++###+++###+++###+++++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
+++###+++###+++###+++###++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
+++###+++###+++###+++###++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
+++###+++###+++###+++###++++####++++++++++######++++++######++++++######++++++++########++++++++########++++++++########
####++++####++++####++++####++++##########++++++######++++++######++++++########++++++++########++++++++########++++++++
####++++####++++####++++####++++##########++++++######++++++######++++++########++++++++########++++++++########++++++++
####++++####++++####++++####++++##########++++++######++++++######++++++########++++++++########++++++++########++++++++
####++++####++++####++++####++++##########++++++######++++++######++++++########++++++++########++++++++########++++++++
++++####++++####++++####++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
++++####++++####++++####++++####++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
++++####++++####++++####++++####++++++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++####++++####++++####++++####++++++++++######++++++######++++++##############++++++++########++++++++########++++++++
####++++####++++####++++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
####++++####++++####++++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
####++++####++++####++++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
####++++####++++####++++####++++####++++++######++++++######++++++######++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
++++++######++++++######++++++######++++++######++++++######++++++##############++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++########++++++++########++++++++########++++++++
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
######++++++######++++++######++++++######++++++######++++++######++++++++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++######++++++######++++++######++++++######++++++######++++++######++++++++########++++++++########++++++++########
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########
########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########++++++++########

Czy macierz liczb całkowitych jest dozwolona jako wyjście (np. 0 i 1s), czy też muszą to być ciągi / znaki?
Nick Kennedy

@Nick To muszą być znaki, przepraszam
Luis Mendo

2
Bardzo dobrze napisane pytanie!
Greg Martin

@GregMartin Hej, dzięki!
Luis Mendo

Odpowiedzi:


3

Galaretka , 40 31 bajtów

1SÆD>Ðḟ½ƊṀṭƲ³¡Äż$Ḷ:Ḃ^þ`ʋ/€ḷ""/Y

Wypróbuj online!

S1

Bez końca Yzwraca listę list liczb całkowitych, ale nie jest to specyfikacja dla tego wyzwania.

Wyjaśnienie

Ten program działa w trzech etapach.

  1. kk
  2. k
  3. Przejrzyj listę szachownic, za każdym razem zamieniając lewą górną część następnej planszy na istniejącą.

Scena 1

1                 | Start with 1
           Ʋ³¡    | Loop through the following the number of times indicated by the first argument to the program; this generates a list of values of k
 S                | - Sum
        Ɗ         | - Following three links as a monad 
  ÆD              |   - List of divisors
    >Ðḟ½          |   - Exclude those greater than the square root
         Ṁ        |   - Maximum
          ṭ       | - Concatenate this to the end of the current list of values of k 
              Äż$ | Zip the cumulative sum of the values of k with the values

Etap 2

      ʋ/€ | For each pair of k and cumulative sum, call the following as a dyad with the cumulative sum of k as the left argument and k as the right (e.g. 15, 3)
Ḷ         | - Lowered range [0, 1 ... , 13, 14]
 :        | - Integer division by k [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]
  Ḃ       | - Mod 2 [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0]
   ^þ`    | - Outer product using xor function and same argument to both side

Etap 3

   /  | Reduce using the following:
ḷ""   | - Replace the top left portion of the next matrix with the current one
    Y | Finally join by newlines

Myślę, że pytający faktycznie chce postaci #i +. Ale wow, wciąż imponujące, zrozumiałem około połowy tego. A jak w ogóle programujesz w takim języku? Czy istnieje tabela znaków i ich znaczenie, z której po prostu kopiujesz?
Fabian Röling

@ FabianRöling OP stwierdza, że ​​dowolne dwa znaki były dopuszczalne. Na stronie github.com/DennisMitchell/jelly znajduje się dobry samouczek wprowadzający dla Jelly . Jeśli znasz Python, źródło jest również dość czytelne. Nawet z samouczkiem i listami atomów i Quicks, znalazłem, że zajęło to trochę czasu, aw niektórych przypadkach odwołanie się do źródła, aby obejść to.
Nick Kennedy


4

Python 2 , 217 215 212 bajtów

def f(x):
 b=['1'];n=1
 for i in range(x):P=max(j*(n%j<(j<=n**.5))for j in range(1,1+n));n+=P;b=[l+P*`j/P%2^i%2`for j,l in enumerate(b)];s=len(b[0]);b+=[((v*P+`1^int(v)`*P)*s)[:s]for v in b[0][len(b):]]
 return b

Wypróbuj online!

Indeksowane 0, używa 0i 1jako znaki


1
@LuisMendo zapisał 2 bajty: D
Rod

3

Python 2 , 184 178 176 169 bajtów

def h(j,a=['1'],R=range):
 for i in R(j):L=len(a);k=max(x for x in R(1,L+1)if(x*x<=L)>L%x);a=[a[m]+k*`(i+m/k)%2`for m in R(L)]+[((`i%2`*k+`~i%2`*k)*L)[:L+k]]*k
 return a

Wypróbuj online!

Korzysta 1, 0na #, -; używa 0-indexing.


2

JavaScript (ES7), 164 bajty

0#1+

n=>(b=[1],g=(a,w,d=w**.5|0)=>b[n]?a:w%d?g(a,w,d-1):g(a.concat(Array(d).fill(b.push(d)&&i++)),w+d))([0],i=1).map((_,y,a)=>a.map((_,x)=>(x/b[v=a[x>y?x:y]]^y/b[v])&1))

Wypróbuj online!


2

Węgiel drzewny , 37 bajtów

FN«≔⊕⌈Φ₂⊕Lυ¬﹪Lυ⊕κηFη«PL⭆⊞Oυω§#+÷⁻κμη↙

Wypróbuj online! Link jest do pełnej wersji kodu. 1-indeksowany. Wyjście rośnie w dół i w lewo (w dół i w prawo kosztuje dodatkowy bajt, ale może rosnąć dla tej samej liczby bajtów). Wyjaśnienie:

FN«

S

≔⊕⌈Φ₂⊕Lυ¬﹪Lυ⊕κη

kn+1n=0k=1

Fη«

k

PL⭆⊞Oυω§#+÷⁻κμη

#+#⊞Oυωn

Zejdź w dół i gotowe do następnego rzędu.


2

05AB1E , 43 42 bajty

$G©ÐX‚ˆÑʒ®>t‹}àDU+}¯εÝ`θ÷ɨDδ^}RζεðKζðδK€θ

Zainspirowany @NickKennedy „s Jelly odpowiedź , a część tylna ζεðKζðδK€θjest port z @Emigna ” s 05AB1E odpowiedzi tutaj .

Zwraca macierz 0zamiast zamiast #i 1zamiast +.

[2,n]J,--no-lazy

Wyjaśnienie:

$                # Push 1 and the input
 G               # Loop the input - 1 amount of times:
  ©              #  Store the top of the stack in variable `r` (without popping)
   Ð             #  And triplicate the top as well
    X           #  Pair it with variable `X` (which is 1 by default)
      ˆ          #  And pop and store this pair in the global array
    Ñ            #  Get the divisors of the integer we triplicated
     ʒ         #  Get the highest divisor which is truthy for:
                #   Where the divisor integer is smaller than
      ®>t        #   the square root of `r+1`
            DU   #  Store a copy of this largest filtered divisor as new variable `X`
              +  #  And add it to the triplicated integer
               # After the loop: push the global array
   ε             # Map each pair to:
    Ý θ          #  Convert the first value in the pair to a list in the range [0,n]
     `           #  and push both this list and the second value to the stack
       ÷         # Integer-divide each value in the list by the second value
        É        # Check for each value if it's even (1 if even; 0 if odd)
         ¨       # Remove the last item
          Dδ     # Loop double vectorized over this list:
            ^    #  And XOR the values with each other
   }R            # After the map: reverse the list of digit-matrices
     ζ           # Zip/transpose; swapping rows and columns, with a space as filler
      ε          # map each matrix to:
       ðK        #  Remove all spaces from the current matrix
         ζ       #  Zip/transpose with a space as filler again
          ðδK    #  Deep remove all spaces
             €θ  #  Then only leave the last values of each row
                 # (after which the resulting matrix of 0s and 1s is output implicitly)

1

Haskell, 149 146 bajtów

(iterate g["#"]!!)
g b|let e=(<$[1..d]);l=length b;d=last[i|i<-[1..l],i*i<=l,mod l i<1];m="+#"++m=(e$take(l+d)$e=<<'#':m)++zipWith(++)(e=<<e<$>m)b

To jest indeksowane 0, zwraca listę ciągów znaków i rośnie w górę i w lewo.

Wypróbuj online!

(iterate g["#"]!!)                    -- start with ["#"], repeatedly add a layer
                                      -- (via function 'g'), collect all results in
                                      -- a list and index it with the input number

g b | let                             -- add a single layer to chessboard 'b'

 l=length b                           -- let 'l' be the size of 'b'
 d=last[i|i<-[1..l],i*i<=l,mod l i<1] -- let 'd' be the size of the new layer
 e=(<$[1..d])                         -- let 'e' be a functions that makes 'd'
                                      --   copies of it's argument
 m="#+"++m                            -- let 'm' be an infinite string of "+#+#+..."

 =                                    -- return
              zipWith(++)             --   concatenate pairwise
                         (e=<<e<$>m)  --   a list of squares made by expanding each
                                      --   char in 'm' to size 'd'-by-'d'
                                    b --   and 'b' (zipWith truncates the infinite
                                      --   list of squares to the length of 'b')
                                      --
           ++                         --   and prepend
                                      --
(e$take(l+d)$e=<<'#':m)               --   the top layer, i.e. a list of 'd' strings
                                      --   each with the pattern 'd' times '#'
                                      --   followed by 'd' times '+', etc., each
                                      --   shortened to the correct size of 'l'+'g'

1

Perl 6 , 156 144 155 154 bajtów

+11, aby naprawić błąd zgłoszony przez nich.

{$!=-1;join "
",(1,{my \k=max grep $_%%*,1.. .sqrt;++$!;flat .kv.map(->\i,\l {l~($!+i/k)%2+|0 x k}),substr(($!%2 x k~1-$!%2 x k)x$_,0,$_+k)xx k}...*)[$_]}

Z grubsza oparty na rozwiązaniu Pythona Chasa Browna . Przyjmuje indeks S zero. Wyjścia 0i 1.

Wypróbuj online!


Naprawiony. Teraz rogi powinny mieć ten sam kolor.
bb94
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.