Czy ten numer jest zły?


34

Wprowadzenie

W teorii liczb liczba jest uważana za złą, jeśli w jej reprezentacji binarnej występuje parzysta liczba 1. W dzisiejszym wyzwaniu będziesz identyfikować, czy dana liczba jest zła, czy nie.

Wyzwanie

Twoim zadaniem jest napisanie pełnego programu lub funkcji, która przyjmuje jedną, nieujemną liczbę całkowitą jako dane wejściowe i wyjściowe (lub zwraca), niezależnie od tego, czy ta liczba jest zła, czy nie.

  • Możesz podać dowolną prawdziwą wartość, jeśli liczba jest zła, i dowolną wartość fałszu, jeśli liczba nie jest zła.
  • Możesz wprowadzać i wyprowadzać w dowolnym akceptowalnym formacie .
  • Standardowe luki są niedozwolone.
  • Sekwencja OEIS A001969 to sekwencja zawierająca wszystkie złe liczby.
  • Oto lista pierwszych 10000 złych liczb w celach informacyjnych (i więcej przypadków testowych!)
  • To pytanie jest w , więc im krótszy, tym lepiej.
  • Nie zniechęcaj się bardzo krótkimi odpowiedziami w językach golfowych. Zachęcam do przesyłania w dowolnym języku.
  • Oto kilka przypadków testowych:

    3 => True
    11 => False
    777 => True
    43 => True
    55 => False
    666 => False
    

Tabela liderów

U dołu strony znajduje się fragment stosu zawierający tabelę wyników dla tego pytania. (Dzięki, @MartinEnder)

Aby upewnić się, że twoja odpowiedź się pojawi, zacznij od nagłówka, korzystając z następującego szablonu Markdown:

# Language Name, N bytes

gdzie Njest rozmiar twojego zgłoszenia. Jeśli poprawić swój wynik, to może zachować stare porachunki w nagłówku, uderzając je przez. Na przykład:

# Ruby, <s>104</s> <s>101</s> 96 bytes

Jeśli chcesz umieścić w nagłówku wiele liczb (np. Ponieważ twój wynik jest sumą dwóch plików lub chcesz osobno wymienić kary za flagi tłumacza), upewnij się, że rzeczywisty wynik jest ostatnią liczbą w nagłówku:

# Perl, 43 + 2 (-p flag) = 45 bytes

Możesz także ustawić nazwę języka jako link, który pojawi się we fragmencie tabeli wyników:

# [><>](http://esolangs.org/wiki/Fish), 121 bytes

EDYCJA: Uważam, że to pytanie nie jest duplikatem tego , ponieważ podczas gdy to pytanie wymaga policzenia liczby jedności, to pytanie pyta, czy liczba parzystych jest parzysta. Mimo, że można osiągnąć to pytanie przez zliczenie liczby bitów, istnieją inne metody zbyt .


2
Powiązane (XOR-każda każda cyfra binarna jest taka sama jak pobranie sumy modulo-2).
Kevin Cruijssen


2
@BetaDecay, ale to nie działa odwrotnie: tzn. Nie możesz wziąć wszystkich tych odpowiedzi i usunąć mod 2. Dlatego wyzwanie to zachęca do nowych metod.
Amfibologiczny

13
Uważam, że 666 => Falsepowinien to być przypadek testowy.
user2390246,

3
Tabela liderów jest dla mnie zepsuta
Jo King

Odpowiedzi:


35

Zespół Z80 (8 bitów), 2 bajty

Poniższy kod działa tylko z wartościami do 255:

; Input is given in register A.
; P flag is set if A is evil.
B7     or A
C9     ret


Wersja 16-bitowa (działa na wszystkich testach), 3 bajty

Działa to z wartościami do 65535.

; Input is given in BC.
; Output is the same as above.
78     ld A,B
A9     xor C
C9     ret

Jeśli masz ochotę na przygodę, możesz zgolić 1 bajt, przechowując dane wejściowe Ai tym Cpodobne

      ld BC, 777
C5    push BC
F1    pop AF

a następnie bieganie

A9    xor C
C9    ret

Obciąża to jednak program wywołujący, więc może się zdarzyć, że dwa bajty ( push BCi pop AF) również zostaną policzone.


podoba mi się to, ale jak to działa? moja pamięć do złożenia (6502 + ramię) jest taka, orże są bitowe z 2 operandami
północny-Bradley

2
@ northern-bradley Na Z80 sugeruje się, że drugim operandem ormnemonika jest akumulator A. W tym przypadku polecenie nie zmienia się A. Odświeża tylko rejestr stanu (aw szczególności flagę parzystości), aby odzwierciedlają zawartość A.
cschultz2048

1
Czy Pdozwolone jest zgodnie z codegolf.meta.stackexchange.com/a/8509/29560 ? Jest to jeden bit w Frejestrze (flagi), na który wpływa tylko trzy pary instrukcji. Ponadto, ta odpowiedź nie wspomina, że ​​konkuruje tylko o wartości 8-bitowe, ponieważ Ajest rejestrem 8-bitowym. Oznacza to, że nie jest w stanie udzielić odpowiedzi 777ani żadnej innej wartości bez znaku powyżej 255.
CJ Dennis

2
Cholerne wbudowane:P
Jo King

1
@ cschultz2048 Ajest sparowany z F, więc nie zaakceptowałbym ABlub BAjako wartość 16-bitowa. BCjest 16-bitowy, ale potrzebujesz dodatkowej instrukcji, aby załadować jedną z nich Aprzed XOR-em drugiej. Zawsze tylko wspominałem, że moje odpowiedzi Z80 działają w pełni do 255 lub 65535, w zależności od pytania. Może dodać również wersję 16-bitową? Tak więc 2 bajty dla wartości 8-bitowych, 3 bajty dla wartości 16-bitowych.
CJ Dennis

25

JavaScript (ES6), 18 bajtów

f=n=>n?!f(n&~-n):1

Wypróbuj online!

Wyjaśnienie

Bitowa logika wygląda następująco:

  • Dla liczb całkowitych ~-njest równoważne -(-n)-1, więc jest to po prostu inny sposób działania n-1. W tym konkretnym przypadku moglibyśmy faktycznie użyć n-1.
  • n & (n-1)usuwa najmniej znaczący bit ustawiony na 1 w n, ponieważ zmniejszenie n zamienia wszystkie końcowe 0 na 1 i usuwa 1, który następuje bezpośrednio (przez propagację przenoszenia), pozostawiając wszystko inne bez zmian.

    Przykład dla n = 24 (11000 dwójkowo):

      11000 (24)                  11000 (24)
    -     1                   AND 10111 (23)
    -------                   ---------
    = 10111 (23)              =   10000 (16)
       ^                           ^
       |                           |
       +--- this bit is cleared ---+
    

Dlatego przetwarzamy tyle wywołań rekurencyjnych, ile jest 1 w reprezentacji binarnej n , odwracając wynik za każdym razem za pomocą !. Ostatnie połączenie zawsze zwraca 1 .

Przykłady:

f(24) = !f(16) = !!f(0) = !!1 = true
f(7) = !f(6) = !!f(4) = !!!f(0) = !!!1 = false

Cześć, rozumiem, co robi kod, ale po prostu nie mogę zrozumieć logiki / uzasadnienia, mimo że przeczytałem kilka artykułów o operacjach bitowych, sprawdziłem, czy liczba jest potęgą 2 itd. Wiem, co to jest funkcja rekurencyjna . Po prostu nie rozumiem, dlaczego został użyty w ten sposób i dlaczego działa on w odpowiedzi na zagadkę, tj. Związek między rekurencją a! F (potęga dwóch) <==> zła liczba. Jeśli masz czas, wyjaśnienia będą mile widziane :) dzięki!
supafly

1
@ supafly Dodałem wyjaśnienie. I BTW: witamy w PPCG!
Arnauld,

Przetwarzanie jest teraz bardzo jasne. Jednak pomysł / rozumowanie jest naprawdę magiczne! Dziękuję za wyjaśnienie!
supafly

13

Python 2 , 25 bajtów

lambda n:int(bin(n),13)%2

Wypróbuj online!

bin(n)daje wynik jak '0b10101'. Czytamy to jako liczbę całkowitą base-13

co zmniejsza moduł 2 do 1 1 5 + 1 1 4 + 0 1 3 + 1 1 2 + 0 1 1 + 1 1

11135+1134+0133+1132+0131+1130
1 + 1 + 0 + 1 + 0 + 1
115+114+013+112+011+110(mod2)
1+1+0+1+0+1(mod2).

Więc int(bin(n),13)%2równa się 1 + (liczba jedynek bin(n)) modulo 2.

Jeśli njest zły, wynik wynosi 1; w przeciwnym razie jest to 0.

Wybrałem tę sztuczkę z Noodle9 .


Ponieważ jest Python 2, kod może być dodatkowo skrócony z Nieaktualne repr grawis Składnia: lambda n:int(`n`,13)%2. Wypróbuj online!
GarethPW,

Tak, miałem tam pierdnięcie mózgu i zapomniałem o celu podstawowego argumentu int. Ups!
GarethPW,

11

Japt -h!, 5 4 3 bajty

¤å^

Spróbuj


Wyjaśnienie

¤       :Convert to base-2 string
 å^     :Cumulatively reduce by XORing
        :Implicitly output the last element negated

@LuisfelipeDejesusMunoz, przenoszenie rozwiązania 05AB1E Kevina działa również przy 5 bajtach, jeśli chcesz spróbować.
Kudłaty

¤¬x vto jest odpowiedź
Kevina

@LuisfelipeDejesusMunoz, tak, to wszystko.
Kudłaty

8

C # (interaktywny kompilator Visual C #) , 43 38 bajtów


Gra w golfa Wypróbuj online!

i=>Convert.ToString(i,2).Sum(c=>c)%2<1

Bez golfa

i => Convert.ToString( i, 2 ).Sum( c => c ) % 2 < 1

Pełny kod z testami

Func<Int32, Boolean> f = i => Convert.ToString( i, 2 ).Sum( c => c ) % 2 < 1;

Int32[] testCases = { 3, 11, 777, 43, 55 };

foreach( Int32 testCase in testCases ) {
    Console.Write( $" Input: {testCase}\nOutput: {f(testCase)}" );
    Console.WriteLine("\n");
}

Console.ReadLine();

Wydawnictwa

  • v1.1 - -5 bytes- Zamieniono CountnaSum
  • v1.0 - 43 bytes- Wstępne rozwiązanie.

Notatki

  • Żaden

2
Pochwalony za chichot, który dała mi Twoja „nie golfowa” wersja.
Jack Brounstein

8

Bash (bez zewnętrznych narzędzi), 56 44 bajtów

while(($1));do set $(($1/2)) $(($2+$1%2));done;!(($2%2))

(($1))&&exec $0 $[$1/2] $[$2+$1%2];!(($2%2))

Zakłada się, że liczba została znaleziona $1, ponieważ została przekazana jako pierwszy argument wiersza poleceń. Zakłada również, że jest to skrypt powłoki (aby mógł execsam).

Powtarza się, po pewnym czasie, używając exec $0, aż liczba (in $1) osiągnie zero, dzieląc ją przez dwa w każdej iteracji. Sumuje także (in $2) liczbę razy, gdy otrzymujemy liczbę nieparzystą. Na koniec oryginalny numer był „zły”, jeśli suma $2nie była nieparzysta.

Przykładowe inwokacje:

$ ./script 3 && echo evil
evil

$ ./script 11 && echo evil

$ ./script 777 && echo evil
evil

$ ./script 43 && echo evil
evil

$ ./script 55 && echo evil

Dla 0:

$ ./script 0 && echo evil
./script: line 1: ((: %2: syntax error: operand expected (error token is "%2")
evil

Prawidłowy wynik, z odrobiną dodatkowej z boku.


7

R , 37 26 bajtów

!sum(scan()%/%2^(0:31))%%2

Wypróbuj online!

Alternatywa dla odpowiedzi Roberta S. pozwala uniknąć wbudowanego dzielenia bitów, ale kończy się mniej golfa, a dzięki JayCe i digEmAll kończy się nieco bardziej golfowo.

2311


Dlaczego nie wpisujesz kodu 31 zamiast log2? Wypróbuj online!
digEmAll

@digEmAll Co z kolei oznacza brak potrzeby definiowania x
JayCe

2)31-1%/%%%

Również intToBits obsługuje tylko wartości całkowite do 2 ^ 31-1;)
digEmAll



5

R , 99 98 44 34 28 bajtów

-1 dzięki Kevin Cruijssen! -54 dzięki ngm! -10 dzięki Giuseppe! -6 dzięki JayCe!

!sum(intToBits(scan())>0)%%2

Wypróbuj online!


Alternatywnie, używając binaryLogicpakietu (39 bajtów):

!sum(binaryLogic::as.binary(scan()))%%2

2
Nie znam R zbyt dobrze, ale jestem pewien, że ==0może być <1:)
Kevin Cruijssen



1
Myślę, że to też działa: 32 bajty, ale wymaga trochę wyjaśnień :)
digEmAll


5

C (gcc) , 36 bajtów

c;f(n){for(c=0;n;c++)n&=n-1;n=~c&1;}

Wypróbuj online!

Metoda K&R https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan

Musi zostać skompilowany z poziomem optymalizacji 0


Nie kompiluje się na gcc 5.4.0: error: expected constructor, destructor, or type conversion before '(' token(strzałka wskazuje na fnazwę funkcji). Jakich flag kompilatora potrzebuję?
villapx

1
Nie działa z -O.
nwellnhof

2
„Zwraca 0 za prawdę, 1 za falsey” Czy to jest legalne? Nie próbuję zdyskredytować twojej odpowiedzi, po prostu ciekawy, a ponieważ uratuje mi to bajt. Uwaga: Słowo „prawda” w pytaniu prowadzi do tej odpowiedzi . I ten komentarz wspomina również truthiness.
Borka223,

@nwellnhof @villapx Kompiluje się dobrze na moim 7.3.0 - upewnij się, że nie brakuje Ci -O0flagi kompilatora.

@ Borka223 hmmm po miesiącach przeglądania tej strony, miałem wrażenie, że prawda i falsey mogą być wszystkim, o ile są spójne w ramach twojego rozwiązania. Jednak odpowiedź, którą podałeś, na pewno wydaje się temu zaprzeczać. Poszedłem dalej i dodałem bajt. Dzięki
vazt


4

PHP, 37 36 bajtów

<?=1&~substr_count(decbin($argn),1);

Aby uruchomić:

echo '<input>' | php -nF <filename>

Lub wypróbuj online!

Drukuje 1na prawdę i 0na fałsz.

-1 bajt dzięki Benoit Esnard !


1
Myślę, że można zapisać jeden bajt usuwając operację modulo: <?=1&~substr_count(decbin($argn),1);. Ten drukuje również 0 dla false.
Benoit Esnard,

Dzięki @BenoitEsnard! To bardzo sprytne, zaktualizowałem swoją odpowiedź :) Każdego dnia uczysz się czegoś nowego!
Davіd

4

Brachylog , 4 bajty

ḃo-0

Wypróbuj online!

Z wieloma przypadkami testowymi (😈 jest złe, a 👼 nie jest.)

Wykorzystuje coś, co odkryłem ostatnio o -predykacie: jego dokumentacja mówi tylko „różnicę elementów [danych wejściowych]”, ale tak naprawdę robi to „sumę elementów o indeksie parzystym (zaczynając od 0) danych wejściowych, pomniejszoną o sumę nieparzystych -indexed elementy wejściowe ".

Tutaj,

konwertuje liczbę na tablicę cyfr binarnych,

o sortuje je, aby zebrać wszystkie 1.

Gdyby liczba parzystych była równa 1, liczba parzysta byłaby równa 1 w parzystych i nieparzystych. Więc -po tym dałoby zero. Ale jeśli byłaby nieparzysta liczba 1, wystałaby dodatkowa 1, powodując różnicę -1 lub 1.

W końcu twierdzimy, że różnica jest 0, i otrzymujemy prawdziwy lub fałszywy wynik zgodnie z tym. Przy bardziej elastycznych wymaganiach dotyczących wyjścia można to usunąć dla odpowiedzi 3-bajtowej, przy czym 0 to wyjście zgodne z prawdą, a -1 i 1 jako oba wyjścia falsey.


4

INTERCAL , 90 65 63 bajtów

DOWRITEIN:1
DO:2<-'#0$#65535'~?':1~:1'
DOREADOUT:2
PLEASEGIVEUP

Wypróbuj online!

Nie ulepszone i rozszerzone (za to, co jest warte) z komentarzami w stylu C.

DO WRITE IN :1 //Store user input in 1
DO :2<-:1~:1 //Select just the ones. So will convert binary 10101 to 111
DO :3<-:?2 //Run the unary xor over the result. Essentially, xor with the right bitshifted
           //(with wraparound) value).
DO :9<-#0$#65535 //Intermingle the 16 bit values of all 0's and all 1's, to create a
                 //32 bit number with 1's in the odd positions.
DO :4<-:9~:3 //It turns out that at this point, evil numbers will have no bits in odd
             //positions, and non-evil numbers will have precisely one bit in an odd
             //position. Therefore, the ~ will return 0 or 1 as appropriate.
PLEASE READ OUT :4 //Politely output
PLEASE GIVE UP //Polite and self explanatory

Musiałem poczynić kilka ustępstw, aby było to możliwe w INTERCAL. Pierwszym jest, podobnie jak we wszystkich programach INTERCAL, wprowadzanie danych numerycznych. Więc jeśli chcesz wprowadzić dane 707, podaj je SEVEN OH SEVEN.

Po drugie, INTERCAL tak naprawdę nie ma właściwej wartości prawdziwości lub fałszu. Zamiast tego wyświetli cyfrę rzymską I(1), jeśli liczba nie jest zła, lub 0 (zwykle reprezentowane jako, -ponieważ cyfry rzymskie zwykle nie mogą reprezentować 0).

Jeśli chcesz je odwrócić, aby liczby zła zwracały 1, a liczby zła zwracały 0, możesz zmienić linie 4 i 5 z wersji bez golfa w następujący sposób, chociaż dodaje 3 bajty.

DO:9<-#65535$#0
DO:4<-#1~:9~3


3

dc , 18 16 bajtów

[2~rd1<M+]dsMx2%

Zwraca (do stosu) 0 za zło i 1 za nie zło

Wypróbuj online!

Dość proste - rekurencyjnie stosuje połączony operator ilorazu / reszty ~do nowego ilorazu i dodaje wszystkie reszty razem, a następnie modyfikuje o 2 (po spędzeniu dwóch bajtów na przejściu do standardowej wartości prawda / fałsz) .

Edytowane w celu odzwierciedlenia konsensusu, że 0 dla prawdy i 1 dla fałszu jest w porządku, szczególnie w języku, który nie ma żadnej if(boolean)konstrukcji.


3

Python 2, 29 bajtów

lambda n:~bin(n).count('1')&1

Wypróbuj online!

Zwraca 1, jeśli Prawda, w przeciwnym razie 0.

Konwertuje liczbę na ciąg binarny, taki jak „0b11”, liczy liczbę 1, pobiera uzupełnienie wyniku i zwraca ostatni bit uzupełnienia (dzięki, https://codegolf.stackexchange.com/users/53560/cdlane !) (1, jeśli oryginalny numer był parzysty, 0, jeśli był nieparzysty).


1
Nie mniej bajtów, ale lambda n:~bin(n).count('1')&1zastępuje podział modułowy czymś potencjalnie tańszym.
cdlane

3

x86-16, 3 bajty

Lista NASM:

 1                                  parity16:
 2 00000000 30E0                        xor al,ah
 3 00000002 C3                          ret

16-bitowa funkcja liczb całkowitych arg w AX (która jest zniszczona), zwracana wartość w PF.

Sprzęt oblicza dla nas parzystość wyniku na podstawie flagi parzystości x86 . Dzwoniący może użyć jp/ jnpdo rozgałęzienia lub cokolwiek zechce.

Działa dokładnie tak, jak odpowiedź Z80 / 8080 @ cschultz ; w rzeczywistości 8086 został zaprojektowany, aby ułatwić mechaniczne przenoszenie źródeł z 8080 .

Zauważ, że PF jest ustawiany tylko od niskiego bajtu szerszych wyników, więc test edi,edinie działałby dla wersji x86-64. Musiałbyś xor poziomo do 16 bitów, lub popcnt eax, edi/ and al,1(gdzie 0 to prawda).


3

C ++ (gcc) (-O0),  36  31 bajtów

int f(int i){i=!i||i%2-f(i/2);}

Wypróbuj online!


C ++ (clang) , 35 bajtów

int f(int i){return!i||i%2-f(i/2);}

Wypróbuj online!


Oto moja pierwsza próba gry w golfa z kodem, mam nadzieję, że nie złamałem żadnej zasady, którą mogłem przegapić.

Edycja:
- Zapisano 5 bajtów dzięki @Jonathan Frech: zastąpiony !=przez -i returnprzez i=(ostatni zamiennik nie wydaje się jednak działać z clang)
- Ponieważ wydaje się, że toczy się debata, czy powinienem użyć nadużycia gcc -O0, pomyślałem, że mógłbym po prostu podaj obie wersje


Witamy w PPCG! Możesz być w stanie zaoszczędzić bajt, grając !=w golfa -i kolejne cztery, grając returnw golfa i=.
Jonathan Frech,

@JathanathanFrech Minęło dużo czasu, odkąd napisałem C ++, czy domyślnie zwraca ostatnie przypisane wyrażenie w funkcji, jeśli nie ma instrukcji return? Zgaduję, że to kwestia gcc?
Sundar - Przywróć Monikę

1
Jest to nadużycie związane z nieokreślonym zachowaniem specyficzne dla gcc na poziomie optymalizacji O0.
Jonathan Frech,

Przełączając się na K&R C, możesz obniżyć go do 23 bajtów (bardzo imponujące!) Wypróbuj online!
ErikF,

@JathanathanFrech: dlaczego ludzie upierają się przy użyciu tego głupiego gcc -O0hacka? Przy porównywaniu implementacji nie jest tak ważna, jak długość całkowitej kotłów języka ma duże znaczenie. Ponadto sprawia, że ​​bardziej interesujące jest wybieranie pomiędzy returnvs przez odniesienie (aktualizacja *ina miejscu). Wolałbym pisać odpowiedzi w C lub C ++, a nie w odpowiedzi niezoptymalizowane-gcc, ponieważ niezoptymalizowany-gcc nie jest zbyt przydatnym językiem.
Peter Cordes,

3

SML , 32 bajty

fun%0=1| %n=(n+ %(n div 2))mod 2

Wyjaśnienie:

  • % to nazwa funkcji
  • pobiera dane wejściowe w repl i zwraca 1 jeśli zło, 0 w przeciwnym razie
  • n jest wejściem, zwraca (n +% (n // 2))% 2

Wykonane przez 2 znudzonych studentów Carnegie Mellon


Witamy w PPCG i dobra pierwsza odpowiedź!
mbomb007

2

Dalej (gforth) , 53 bajty

: f 1 swap begin 2 /mod -rot xor swap ?dup 0= until ;

Wypróbuj online!

Wyjaśnienie

Przyjmuje sumę xor cyfr postaci binarnej liczby. (wielokrotnie dzieli przez 2, a xors resztę wartością „suma”)

Objaśnienie kodu

: f              \ begin a new word definition
  1 swap         \ place 1 on the stack below the input (n)
  begin          \ start an indefinite loop
    2 /mod       \ get the quotient and remainder of dividing n by 2
    -rot         \ move the sum and remainder to the top of the stack
    xor          \ xor the sum and remainder
    swap         \ move the quotient back to the top of the stack
    ?dup         \ duplicate if > 0
    0=           \ get "boolean" indicating if quotient is 0
  until          \ end the loop if it is, otherwise go back to the beginning
;                \ end the word definition

2

Java 8, 40 36 bajtów

n->n.toString(n,2).chars().sum()%2<1

-4 bajty dzięki @Okx za coś, czego sam nie powinienem zapomnieć ...

Wypróbuj online.

Wyjaśnienie:

n->                // Method with Integer parameter and boolean return-type
  n.toString(n,2)  //  Convert the integer to a binary String
   .chars()        //  Convert that to an IntStream of character-encodings
   .sum()          //  Sum everything together
    %2<1           //  And check if it's even

Zauważ, że znaki kodujące dla 0i 148i 49, ale sumowanie ich i przyjmowanie modulo-2 nadal zawiera prawidłowe wyniki, ponieważ 48%2 = 0i 49%2 = 1.


1
n.toString(n,2)oszczędza 4 bajty.
Okx,

@Okx Nie jestem pewien, jak o tym zapomniałem, lol .. Dzięki! ;)
Kevin Cruijssen

Jeśli możesz używać 1 i 0 zamiast true i false (nie jest to pewne w Javie), możesz zmienić na: ~n.toString(n,2).chars().sum()%2aby zapisać jeden bajt.
Mario Ishac,

1
@MarDev Niestety 0i 1nie są prawdziwe / falsey w Javie, tylko booleans/ Booleanssą. Jeśli wyzwanie mówi, że dozwolone są dwa różne dane wyjściowe, <1można by je rzeczywiście usunąć, aby zaoszczędzić 2 bajty. :)
Kevin Cruijssen


2

Retina 0.8.2 , 28 bajtów

.+
$*
+`(1+)\1
$+0
0

11

^$

Wypróbuj online! Link zawiera przypadki testowe. Wyjaśnienie:

.+
$*

Konwertuj na unary.

+`(1+)\1
$+0

Częściowa konwersja binarna (pozostawia dodatkowe zera).

0

Usuń wszystkie zera.

11

Modulo te przez dwa.

^$

Sprawdź, czy wynik wynosi zero.


2

Zestaw x86, 12 11 bajtów

F3 0F B8 44 24 04  popcnt      eax,dword ptr [esp+4] ; Load EAX with the number of ones in arg
F7 D0              not         eax ; One's complement negation of EAX
24 01              and         al,1 ; Isolate bottom bit of EAX
C3                 ret             

-1 bajt dzięki sugestii @ ceilingcat


@ceilingcat Good catch!
Govind Parmar

1
Zaproponuj inc eaxzamiast not eax. Warto również wspomnieć, że wymaga to procesora obsługującego popcntinstrukcję.
ceilingcat

1
nie musisz też pobierać arg ze stosu. patrz dozwolone konwencje połączeń codegolf.stackexchange.com/a/161497/17360 (bardziej szczegółowa odpowiedź Petera Cordesa codegolf.stackexchange.com/a/165020/17360 )
qwr

1
Pamiętaj, że możesz zwrócić wartość logiczną w FLAGS stackoverflow.com/a/48382679/3163618
qwr 1'18

Czy 666 nie powinno być przypadkiem testowym?
Arcanist Lupus

2

Narzędzia Bash + GNU, 33

dc -e2o?p|tr -d 0|wc -c|dc -e?2%p

Wypróbuj online!

Odczytuje dane wejściowe ze STDIN. Wyjścia 1 dla wartości True i 0 dla wartości False.

  • dc konwertuje dane wejściowe na ciąg binarny
  • tr usuwa zera
  • wc zlicza pozostałe (i końcowy znak nowej linii, co koryguje logikę
  • dc oblicza zliczanie mod 2 i wysyła odpowiedź

2

Python 2, 28 27 bajtów

f=lambda n:n<1or n&1^f(n/2)

Wypróbuj online!

Zwraca wartość truthy jeśli dokładnie jeden z the ones-bit is a 1i the result of calling this function on n/2 is truthyjest prawdą (lub n==0). Działa ponieważn/2 jest równoważne poprawnemu przesunięciu bitów z podziałem podłogi (więc tylko Python 2).

Wersja alternatywna, również 28 27 bajtów

g=lambda n:n<1or g(n&n-1)^1

Wypróbuj online!

Oparty na metodzie K&R zliczania zestawów bitów, do których odwołuje się vazt.

Oba mogą być o dwa bajty krótsze, jeśli dane wyjściowe pozwolą falsey oznaczać zło.

Edycja: Podziękowania dla Amphibological za uratowanie bajtu!


Możesz usunąć spacje między 1i, oraby zapisać +1 bajt. Fajne rozwiązanie!
Amphibological

Człowieku, myślałem, że tego spróbowałem. Dobry chwyt!
Jack Brounstein,

2

APL (Dyalog Unicode) , 10 bajtów SBCS

Anonimowa ukryta funkcja. Jako argument może przyjąć dowolną tablicę liczb całkowitych.

≠⌿12∘⊥⍣¯1

Wypróbuj online!

2∘⊥⍣¯1 konwertuj na binarny, używając tyle cyfr, ile potrzeba przez największą liczbę, oddzielne cyfry wzdłuż osi głównej

1⍪ dodawaj te wzdłuż głównej osi

≠⌿ Redukcja XOR wzdłuż osi głównej


2

J , 9 bajtów

Anonimowa ukryta funkcja. Może przyjmować dowolną tablicę liczb całkowitych jako argument.

1-2|1#.#:

Wypróbuj online!

1- jeden minus (tj. logiczna negacja)

2| mod-2 z

1#. suma (lit. ocena podstawy 1) z

#: reprezentacja binarna


Niezłe! nudne podejście to 9 bajtów:2|1+1#.#:
Conor O'Brien

To wydaje się działać, ponieważ 777 na wejściu sprawia, że ​​każda liczba jest reprezentowana w 10 bitach. Zastąp go np. 480, a wyjście się odwróci.
FrownyFrog,

@ ConorO'Brien Nudne atuty są nieprawidłowe.
Adám

@FrownyFrog Naprawiono.
Adám
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.