Uwaga: tytuł tego pytania powinien brzmieć „Loop It”, ale ponieważ tytuł musi mieć co najmniej 15 znaków, jest kilka niewidocznych spacji. Ta uwaga jest taka, że można wyszukać wyzwanie.
Wyzwanie
Biorąc pod uwagę skończoną listę unikalnych punktów całkowitych na płaszczyźnie, znajdź wielokąt, którego wierzchołki są dokładnie tymi punktami, które się nie przecinają.
Detale
- Jako dane wejściowe możesz wziąć np. Dwie listy z każdą współrzędną x i y lub listę par.
- Lista wejściowa zawiera co najmniej 3 punkty.
- Pamiętaj, że oznacza to, że nigdy nie ma unikalnego rozwiązania.
- Można założyć, że lista danych wejściowych nie jest współliniowa (punkty nie mogą być zawarte w jednej linii), co oznacza, że faktycznie istnieje taki nie przecinający się wielokąt.
- Kąty na każdym wierzchołku są dowolne, obejmuje to 180 °.
- Na wejście wartości długości
n, dane wyjściowe powinny być permutacją(p1,p2,p3,...,pn)od(1,2,3,...,n)gdziek-ty wpispkreprezentujeppunkt -ty z listy wejściowego. Oznacza to, że mamy linię odp1dop2, linię odp2dop3itp., A także linię odpndop1. (Możesz także użyć wskaźników opartych na 0). Alternatywnie możesz po prostu wypisać listę punktów wejściowych we właściwej kolejności.
Przykłady
Powiedzmy, że mamy punkty [(0,0),(0,1),(1,0),(-1,0),(0,-1)]i chcemy przedstawić następującą ścieżkę:
Oznacza to, że wyprowadzilibyśmy listę [5,1,4,2,3]
Oto kilka sugestii do wypróbowania (polecam przyjrzenie się odpowiednim działkom, aby zweryfikować cele).
Triangle
[(0,0),(0,1),(1,0)]
S-Curve
[(0,0),(0,1),(0,2),(0,3),(0,4),(1,0),(2,0),(2,1),(2,2),(2,3),(2,4),(3,4),(4,0),(4,1),(4,2),(4,3),(4,4)]
L-Shape
[(4,0),(1,0),(3,0),(0,0),(2,0),(0,1)]
Menger Sponge
[(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),(17,1),(18,1),(19,1),(20,1),(21,1),(22,1),(23,1),(24,1),(25,1),(26,1),(27,1),(1,2),(3,2),(4,2),(6,2),(7,2),(9,2),(10,2),(12,2),(13,2),(15,2),(16,2),(18,2),(19,2),(21,2),(22,2),(24,2),(25,2),(27,2),(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),(17,3),(18,3),(19,3),(20,3),(21,3),(22,3),(23,3),(24,3),(25,3),(26,3),(27,3),(1,4),(2,4),(3,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(16,4),(17,4),(18,4),(19,4),(20,4),(21,4),(25,4),(26,4),(27,4),(1,5),(3,5),(7,5),(9,5),(10,5),(12,5),(16,5),(18,5),(19,5),(21,5),(25,5),(27,5),(1,6),(2,6),(3,6),(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(16,6),(17,6),(18,6),(19,6),(20,6),(21,6),(25,6),(26,6),(27,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),(17,7),(18,7),(19,7),(20,7),(21,7),(22,7),(23,7),(24,7),(25,7),(26,7),(27,7),(1,8),(3,8),(4,8),(6,8),(7,8),(9,8),(10,8),(12,8),(13,8),(15,8),(16,8),(18,8),(19,8),(21,8),(22,8),(24,8),(25,8),(27,8),(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),(9,9),(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),(17,9),(18,9),(19,9),(20,9),(21,9),(22,9),(23,9),(24,9),(25,9),(26,9),(27,9),(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),(19,10),(20,10),(21,10),(22,10),(23,10),(24,10),(25,10),(26,10),(27,10),(1,11),(3,11),(4,11),(6,11),(7,11),(9,11),(19,11),(21,11),(22,11),(24,11),(25,11),(27,11),(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(19,12),(20,12),(21,12),(22,12),(23,12),(24,12),(25,12),(26,12),(27,12),(1,13),(2,13),(3,13),(7,13),(8,13),(9,13),(19,13),(20,13),(21,13),(25,13),(26,13),(27,13),(1,14),(3,14),(7,14),(9,14),(19,14),(21,14),(25,14),(27,14),(1,15),(2,15),(3,15),(7,15),(8,15),(9,15),(19,15),(20,15),(21,15),(25,15),(26,15),(27,15),(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(19,16),(20,16),(21,16),(22,16),(23,16),(24,16),(25,16),(26,16),(27,16),(1,17),(3,17),(4,17),(6,17),(7,17),(9,17),(19,17),(21,17),(22,17),(24,17),(25,17),(27,17),(1,18),(2,18),(3,18),(4,18),(5,18),(6,18),(7,18),(8,18),(9,18),(19,18),(20,18),(21,18),(22,18),(23,18),(24,18),(25,18),(26,18),(27,18),(1,19),(2,19),(3,19),(4,19),(5,19),(6,19),(7,19),(8,19),(9,19),(10,19),(11,19),(12,19),(13,19),(14,19),(15,19),(16,19),(17,19),(18,19),(19,19),(20,19),(21,19),(22,19),(23,19),(24,19),(25,19),(26,19),(27,19),(1,20),(3,20),(4,20),(6,20),(7,20),(9,20),(10,20),(12,20),(13,20),(15,20),(16,20),(18,20),(19,20),(21,20),(22,20),(24,20),(25,20),(27,20),(1,21),(2,21),(3,21),(4,21),(5,21),(6,21),(7,21),(8,21),(9,21),(10,21),(11,21),(12,21),(13,21),(14,21),(15,21),(16,21),(17,21),(18,21),(19,21),(20,21),(21,21),(22,21),(23,21),(24,21),(25,21),(26,21),(27,21),(1,22),(2,22),(3,22),(7,22),(8,22),(9,22),(10,22),(11,22),(12,22),(16,22),(17,22),(18,22),(19,22),(20,22),(21,22),(25,22),(26,22),(27,22),(1,23),(3,23),(7,23),(9,23),(10,23),(12,23),(16,23),(18,23),(19,23),(21,23),(25,23),(27,23),(1,24),(2,24),(3,24),(7,24),(8,24),(9,24),(10,24),(11,24),(12,24),(16,24),(17,24),(18,24),(19,24),(20,24),(21,24),(25,24),(26,24),(27,24),(1,25),(2,25),(3,25),(4,25),(5,25),(6,25),(7,25),(8,25),(9,25),(10,25),(11,25),(12,25),(13,25),(14,25),(15,25),(16,25),(17,25),(18,25),(19,25),(20,25),(21,25),(22,25),(23,25),(24,25),(25,25),(26,25),(27,25),(1,26),(3,26),(4,26),(6,26),(7,26),(9,26),(10,26),(12,26),(13,26),(15,26),(16,26),(18,26),(19,26),(21,26),(22,26),(24,26),(25,26),(27,26),(1,27),(2,27),(3,27),(4,27),(5,27),(6,27),(7,27),(8,27),(9,27),(10,27),(11,27),(12,27),(13,27),(14,27),(15,27),(16,27),(17,27),(18,27),(19,27),(20,27),(21,27),(22,27),(23,27),(24,27),(25,27),(26,27),(27,27)]


