Odpowiedzi:
Pod Linuksem możesz znaleźć PID swojego procesu, a następnie spojrzeć na /proc/$PID/status
. Zawiera wiersze opisujące, które sygnały są blokowane (SigBlk), ignorowane (SigIgn) lub przechwycone (SigCgt).
# cat /proc/1/status
...
SigBlk: 0000000000000000
SigIgn: fffffffe57f0d8fc
SigCgt: 00000000280b2603
...
Liczba po prawej to maska bitowa. Jeśli przekształcisz go z szesnastkowego na dwójkowy, każdy 1-bit reprezentuje przechwycony sygnał, licząc od prawej do lewej, zaczynając od 1. Tak więc interpretując linię SigCgt, możemy zobaczyć, że mój init
proces przechwytuje następujące sygnały:
00000000280b2603 ==> 101000000010110010011000000011
| | | || | || |`-> 1 = SIGHUP
| | | || | || `--> 2 = SIGINT
| | | || | |`----------> 10 = SIGUSR1
| | | || | `-----------> 11 = SIGSEGV
| | | || `--------------> 14 = SIGALRM
| | | |`-----------------> 17 = SIGCHLD
| | | `------------------> 18 = SIGCONT
| | `--------------------> 20 = SIGTSTP
| `----------------------------> 28 = SIGWINCH
`------------------------------> 30 = SIGPWR
(Znalazłem mapowanie liczb na nazwy, uruchamiając kill -l
z bash.)
EDYCJA : I na żądanie, skrypt w POSIX sh.
sigparse () {
i=0
# bits="$(printf "16i 2o %X p" "0x$1" | dc)" # variant for busybox
bits="$(printf "ibase=16; obase=2; %X\n" "0x$1" | bc)"
while [ -n "$bits" ] ; do
i="$(expr "$i" + 1)"
case "$bits" in
*1) printf " %s(%s)" "$(kill -l "$i")" "$i" ;;
esac
bits="${bits%?}"
done
}
grep "^Sig...:" "/proc/$1/status" | while read a b ; do
printf "%s%s\n" "$a" "$(sigparse "$b")"
done # | fmt -t # uncomment for pretty-printing
/proc
? Działa tylko w systemie Linux ... I local
nie jest POSIX. Cóż, to trochę tak, ale jego efekt jest „nieokreślony”.
/bin/sh
. Masz rację local
; Posprzątam to.
W psig
systemie Solaris uruchom identyfikator procesu, aby uzyskać listę sygnałów i sposób ich obsługi.
Na przykład:
bash-4.2$ psig $$
11088: bash
HUP caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
INT caught sigint_sighandler 0
QUIT ignored
ILL caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
TRAP caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
ABRT caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
EMT caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
FPE caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
KILL default
BUS caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
SEGV caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
SYS caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
PIPE caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
ALRM caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
TERM ignored
USR1 caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
USR2 caught termsig_sighandler 0 HUP,INT,ILL,TRAP,ABRT,EMT,FPE,BUS,SEGV,SYS,PIPE,ALRM,TERM,USR1,USR2,VTALRM,XCPU,XFSZ,LOST
CLD blocked,caught 0x4898e8 RESTART
PWR default
WINCH caught sigwinch_sighandler 0
[...]
co pokazuje, że SIGHUP, SIGILL itp. zostaną przechwycone przez tę samą funkcję modułu obsługi sygnałów termsig_sighandler
, która zostanie uruchomiona bez użycia żadnych flag, które można ustawić za pomocą sigaction
, oraz wszystkie sygnały, które zostaną tymczasowo zamaskowane, gdy moduł obsługi sygnału jest działa (w tym przypadku wszystkie używają tej samej procedury obsługi sygnału, więc nie jest ponownie wprowadzane, gdy już działa). Możesz również zobaczyć, że SIGQUIT i SIGTERM zostaną zignorowane, SIGKILL i SIGPWR używają domyślnych akcji systemowych sygnału, a SIGCLD określa flagę RESTART, więc jeśli jego procedura obsługi sygnału przerwie wywołanie systemowe, syscall zostanie zrestartowany.
(Ta odpowiedź jest podobna do odpowiedzi @ user18096, ponieważ tworzy skrypt wokół odpowiedzi @ Jander.)
Napisałem a, psig script
aby wziąć PID (lub wszystkie PID) i stworzyć czytelne dla człowieka wyjście z masek sygnałowych /proc/<PID>/status
.
Przykładowe dane wyjściowe:
% ./psig -a
[ 1] Signals Queued: 8/773737
[ 1] Signals Pending:
[ 1] Signals Pending (Shared):
[ 1] Signals Blocked:
[ 1] Signals Ignored: SIGPIPE
[ 1] Signals Caught: SIGHUP,SIGINT,SIGABRT,SIGUSR1,SIGSEGV,SIGALRM,SIGTERM,SIGCHLD,SIGPWR
...
[ 31001] Signals Queued: 0/773737
[ 31001] Signals Pending:
[ 31001] Signals Pending (Shared):
[ 31001] Signals Blocked: SIGHUP,SIGINT,SIGQUIT,SIGILL,SIGTRAP,SIGABRT,SIGBUS,SIGFPE,SIGUSR1,SIGUSR2,SIGPIPE,SIGALRM,SIGTERM,SIGSTKFLT,SIGCHLD,SIGCONT,SIGTSTP,SIGTTIN,SIGTTOU,SIGURG,SIGXCPU,SIGXFSZ,SIGPROF,SIGWINCH,SIGIO,SIGPWR,SIGSYS,SIGRTMIN,SIGRTMIN+1,SIGRTMIN+2,SIGRTMIN+3,SIGRTMIN+4,SIGRTMIN+5,SIGRTMIN+6,SIGRTMIN+7,SIGRTMIN+8,SIGRTMIN+9,SIGRTMIN+10,SIGRTMIN+11,SIGRTMIN+12,SIGRTMIN+13,SIGRTMIN+14,SIGRTMIN+15,SIGRTMAX-14,SIGRTMAX-13,SIGRTMAX-12,SIGRTMAX-11,SIGRTMAX-10,SIGRTMAX-9,SIGRTMAX-8,SIGRTMAX-7,SIGRTMAX-6,SIGRTMAX-5,SIGRTMAX-4,SIGRTMAX-3,SIGRTMAX-2,SIGRTMAX-1,SIGRTMAX
[ 31001] Signals Ignored: SIGHUP,SIGINT,SIGQUIT,SIGPIPE,SIGXFSZ
[ 31001] Signals Caught: SIGBUS,SIGUSR1,SIGSEGV,SIGUSR2,SIGALRM,SIGTERM,SIGVTALRM
Ostrzeżenia:
with
i OrderedDict
.Wciąż wracam do ładnej odpowiedzi @ Jander, mając nadzieję na dekoder kopiuj-wklej, gdy widzę coś takiego:
user@machine:~$ grep Sig...: /proc/18475/status
SigPnd: 0000000000000000
SigBlk: fffffffe7dfbfaff
SigIgn: 0000000000001000
SigCgt: 0000000182006e47
user@machine:~$
Chyba będę musiał coś podrzucić ... powiedzieć:
user@machine:~$ ruby -wn - /proc/18475/status <<'EOF'
if $_.match(/Sig(Pnd|Blk|Ign|Cgt):\s([0-9a-f]{16})/) == nil
next
end
field = $1
mask = $2.to_i(16)
names = []
Signal.list().each_pair() {
|name, number|
if number == 0
# "EXIT" => 0
next
end
if (mask & (1 << (number - 1))) == 0
next
end
names << name
}
puts("Sig#{field}: #{names.join(" | ")}")
EOF
SigPnd:
SigBlk: HUP | INT | QUIT | ILL | TRAP | IOT | ABRT | FPE | BUS | SYS | PIPE | ALRM | TERM | URG | TSTP | CONT | CHLD | CLD | TTIN | TTOU | IO | XCPU | XFSZ | PROF | WINCH | USR1 | USR2 | PWR | POLL
SigIgn: PIPE
SigCgt: HUP | INT | QUIT | BUS | SEGV | ALRM | TERM | VTALRM | USR1 | USR2
user@machine:~$
Chciałem, aby było to trochę czytelne, ale to spowodowało, że nieco trudniej było go wywoływać, niż chciałbym, więc dzięki sugestii @ alanc, zapiszę go jako ~ / bin / psig.
Posługiwać się to(uszkodzony link) ta
biblioteka, aby uzyskać informacje o uruchomionych zadaniach.
W struct Job
sygnałach znajduje się specjalne pole , zwanesigCgt
Możesz użyć czegoś takiego:
#include"read_proc.h"
int main(void)
{
struct Root * rt=read_proc();
struct Job * jb=rt->first->job;
printf("%ull\n",jb->sigCgt);
return 0;
}
W FreeBSD użyj, procstat -i <PID>
aby zobaczyć, które sygnały są ignorowane przez proces. Podobnie, procstat -j <PID>
aby zobaczyć, które sygnały są blokowane przez wątki procesu. Oba polecenia pokazują, czy sygnał oczekuje.
Przykładowe dane wyjściowe:
$ procstat -i 38540
PID COMM SIG FLAGS
38540 nsulfd HUP -I-
38540 nsulfd INT -I-
38540 nsulfd QUIT -I-
38540 nsulfd ILL ---
38540 nsulfd TRAP ---
...
$ procstat -j 38540
PID TID COMM SIG FLAGS
38540 101220 nsulfd HUP --
38540 101220 nsulfd INT --
38540 101220 nsulfd QUIT -B
38540 101220 nsulfd ILL --
38540 101220 nsulfd TRAP --
...
Zobacz procstat (1) .
SigBlk
czy pojawia się również wSigCgt
? Ponieważ blokowanie go oznacza po prostu, że sygnał zostanie wysłany nieco później, prawda i trzeba go złapać?