Moje próby:
Nie mogłem uzyskać przedziałów ufności
interaction.plot()z drugiej strony
plotmeans()z pakietu „gplot” nie wyświetlałby dwóch wykresów. Co więcej, nie mogłem nałożyć dwóchplotmeans()wykresów jeden na drugim, ponieważ domyślnie oś jest inna.Miałem pewne sukcesy, używając
plotCI()pakietu gplot i nakładając dwa wykresy, ale dopasowanie osi nie było idealne.
Wszelkie porady dotyczące tworzenia wykresu interakcji z przedziałami ufności? Albo za pomocą jednej funkcji, albo porady dotyczące nakładania się plotmeans()lub plotCI()wykresów.
próbka kodu
br=structure(list(tangle = c(140L, 50L, 40L, 140L, 90L, 70L, 110L,
150L, 150L, 110L, 110L, 50L, 90L, 140L, 110L, 50L, 60L, 40L,
40L, 130L, 120L, 140L, 70L, 50L, 140L, 120L, 130L, 50L, 40L,
80L, 140L, 100L, 60L, 70L, 50L, 60L, 60L, 130L, 40L, 130L, 100L,
70L, 110L, 80L, 120L, 110L, 40L, 100L, 40L, 60L, 120L, 120L,
70L, 80L, 130L, 60L, 100L, 100L, 60L, 70L, 90L, 100L, 140L, 70L,
100L, 90L, 130L, 70L, 130L, 40L, 80L, 130L, 150L, 110L, 120L,
140L, 90L, 60L, 90L, 80L, 120L, 150L, 90L, 150L, 50L, 50L, 100L,
150L, 80L, 90L, 110L, 150L, 150L, 120L, 80L, 80L), gtangles = c(141L,
58L, 44L, 154L, 120L, 90L, 128L, 147L, 147L, 120L, 127L, 66L,
118L, 141L, 111L, 59L, 72L, 45L, 52L, 144L, 139L, 143L, 73L,
59L, 148L, 141L, 135L, 63L, 51L, 88L, 147L, 110L, 68L, 78L, 63L,
64L, 70L, 133L, 49L, 129L, 100L, 78L, 128L, 91L, 121L, 109L,
48L, 113L, 50L, 68L, 135L, 120L, 85L, 97L, 136L, 59L, 112L, 103L,
62L, 87L, 92L, 116L, 141L, 70L, 121L, 92L, 137L, 85L, 117L, 51L,
84L, 128L, 162L, 102L, 127L, 151L, 115L, 57L, 93L, 92L, 117L,
140L, 95L, 159L, 57L, 65L, 130L, 152L, 90L, 117L, 116L, 147L,
140L, 116L, 98L, 95L), up = c(-1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
-1L, -1L, 1L, 1L, 1L, 1L, -1L, -1L, -1L, -1L, 1L, 1L, -1L, -1L,
1L, 1L, -1L, 1L, 1L, -1L, 1L, 1L, 1L, 1L, 1L, -1L, -1L, 1L, 1L,
1L, 1L, -1L, -1L, 1L, 1L, -1L, -1L, -1L, -1L, -1L, -1L, -1L,
1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, -1L,
-1L, 1L, -1L, 1L, -1L, -1L, -1L, 1L, -1L, 1L, -1L, 1L, 1L, 1L,
-1L, -1L, -1L, -1L, -1L, -1L, 1L, -1L, 1L, 1L, -1L, -1L, 1L,
1L, 1L, -1L, 1L, 1L, 1L)), .Names = c("tangle", "gtangles", "up"
), class = "data.frame", row.names = c(NA, -96L))
plotmeans2 <- function(br, alph) {
dt=br; tmp <- split(br$gtangles, br$tangle);
means <- sapply(tmp, mean); stdev <- sqrt(sapply(tmp, var));
n <- sapply(tmp,length);
ciw <- qt(alph, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12));
par(new=TRUE) dt= subset(br,up==1);
tmp <- split(dt$gtangles, dt$tangle);
means <- sapply(tmp, mean);
stdev <- sqrt(sapply(tmp, var));
n <- sapply(tmp,length);
ciw <- qt(0.95, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, type='l',col="black", barcol="red", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='+');
abline(v=6);abline(h=90);abline(30,10); par(new=TRUE);
dt=subset(br,up==-1);
tmp <- split(dt$gtangles, dt$tangle);
means <- sapply(tmp, mean);
stdev <- sqrt(sapply(tmp, var));
n <- sapply(tmp,length);
ciw <- qt(0.95, n) * stdev / sqrt(n)
plotCI(x=means, uiw=ciw, type='l', col="black", barcol="blue", lwd=1,ylim=c(40,150), xlim=c(1,12),pch='-');abline(v=6);abline(h=90);
abline(30,10);
}
plotmeans2(br,.95)


