Mam dwa główne efekty, V1 i V2. Wpływ V1 i V2 na zmienne odpowiedzi jest negatywny. Jednak z jakiegoś powodu uzyskuję dodatni współczynnik dla terminu interakcji V1 * V2. Jak mogę to zinterpretować? czy taka sytuacja jest możliwa?
Mam dwa główne efekty, V1 i V2. Wpływ V1 i V2 na zmienne odpowiedzi jest negatywny. Jednak z jakiegoś powodu uzyskuję dodatni współczynnik dla terminu interakcji V1 * V2. Jak mogę to zinterpretować? czy taka sytuacja jest możliwa?
Odpowiedzi:
Na pewno. Jako prosty przykład rozważ eksperyment, w którym dodajesz określone objętości gorącej (V1) i zimnej (V2) wody do akwarium, który zaczyna się w odpowiedniej temperaturze. Zmienna odpowiedzi (V3) to liczba ryb, które przeżyły po dniu. Intuicyjnie, jeśli dodasz tylko gorącą wodę (wzrost V1), wiele ryb zginie (V3 spadnie). Jeśli dodasz tylko zimną wodę (wzrost V2), wiele ryb zginie (V3 spadnie). Ale jeśli dodasz zarówno ciepłą, jak i zimną wodę (wzrost V1 i V2, a więc wzrost V1 * V2), ryba będzie w porządku (V3 pozostaje wysoka), więc interakcja musi przeciwdziałać dwóm głównym efektom i być pozytywna.
Poniżej stworzyłem 18 punktów danych naśladujących powyższą sytuację i dopasowałem wielokrotną regresję liniową w R i uwzględniłem wynik. W ostatnim wierszu możesz zobaczyć dwa negatywne główne efekty i pozytywne interakcje. Możesz pozwolić, aby V1 = litry gorącej wody, V2 = litry zimnej wody, a V3 = liczba ryb żywych po jednym dniu.
V1 V2 V3
1 0 0 100
2 0 1 90
3 1 0 89
4 1 1 99
5 2 0 79
6 0 2 80
7 2 1 91
8 1 2 92
9 2 2 99
10 3 3 100
11 2 3 88
12 3 2 91
13 0 3 70
14 3 0 69
15 3 3 100
16 4 0 61
17 0 4 60
18 4 2 82
A = matrix(c(0,0,100, 0,1,90, 1,0,89, 1,1,99, 2,0,79, 0,2,80, 2,1,91, 1,2,92,
2,2,99, 3,3,100, 2,3,88, 3,2,91, 0,3,70, 3,0,69, 3,3,100, 4,0,61, 0,4,60,
4,2, 82), byrow=T, ncol=3)
A = as.data.frame(A)
summary(lm(V3~V1+V2+V1:V2, data=A))
Coefficients:
(Intercept) V1 V2 V1:V2
103.568 -10.853 -10.214 6.563
Alternatywnym sposobem spojrzenia na sytuację w stosunku do genialnego przykładu @ underminer jest zauważenie, że przy regresji metodą najmniejszych kwadratów dopasowane wartości spełniają „ograniczenia korelacji”
Gdzie jest wartością zmiennej kth (niezależna / objaśniająca / predyktor / etc) w i-tej obserwacji. Zauważ, że prawa strona nie zależy od innych zmiennych w modelu. Jeśli więc „y” ogólnie rośnie / spada wraz ze zmienną kth, wówczas zmienią się również wartości dopasowane. Łatwo jest przejrzeć bety, gdy występują tylko główne efekty, ale mylące, gdy występują interakcje.
Zwróć uwagę, że interakcje „rujnują” typową interpretację bet jako „wpływ na odpowiedź poprzez zwiększenie tej zmiennej o jedną jednostkę przy zachowaniu stałej wszystkich pozostałych zmiennych ”. Jest to bezużyteczna interpretacja, gdy występują interakcje, ponieważ wiemy, że zmiana jednej zmiennej zmieni wartości dla warunków interakcji, a także głównych efektów. W najprostszym przypadku podanym w przykładzie masz taką zmianę o jeden zmieni dopasowaną wartość o
Najwyraźniej tylko patrzę nie da ci właściwego „efektu” w odpowiedzi.