Interpolacja danych dotyczących grypy, która oszczędza tygodniową średnią


13

Edytować

Znalazłem artykuł opisujący dokładnie procedurę, której potrzebuję. Jedyna różnica polega na tym, że papier interpoluje średnie dane miesięczne do dziennych, przy jednoczesnym zachowaniu średnich miesięcznych. Mam problem z wdrożeniem tego podejścia R. Wszelkie wskazówki są mile widziane.

Oryginalny

Na każdy tydzień mam następujące dane zliczania (jedna wartość na tydzień):

  • Liczba konsultacji lekarskich
  • Liczba przypadków grypy

Moim celem jest uzyskiwanie codziennych danych przez interpolację (myślałem o liniowych lub skróconych splajnach). Ważne jest to, że chcę zachować średnią tygodniową, tj. Średnia dziennych danych interpolowanych powinna być równa zarejestrowanej wartości z tego tygodnia. Ponadto interpolacja powinna być płynna. Jednym z problemów, które mogą się pojawić, jest to, że dany tydzień ma mniej niż 7 dni (np. Na początku lub na końcu roku).

Byłbym wdzięczny za porady w tej sprawie.

Wielkie dzięki.

Oto przykładowy zestaw danych za rok 1995 ( zaktualizowany ):

structure(list(daily.ts = structure(c(9131, 9132, 9133, 9134, 
9135, 9136, 9137, 9138, 9139, 9140, 9141, 9142, 9143, 9144, 9145, 
9146, 9147, 9148, 9149, 9150, 9151, 9152, 9153, 9154, 9155, 9156, 
9157, 9158, 9159, 9160, 9161, 9162, 9163, 9164, 9165, 9166, 9167, 
9168, 9169, 9170, 9171, 9172, 9173, 9174, 9175, 9176, 9177, 9178, 
9179, 9180, 9181, 9182, 9183, 9184, 9185, 9186, 9187, 9188, 9189, 
9190, 9191, 9192, 9193, 9194, 9195, 9196, 9197, 9198, 9199, 9200, 
9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 9210, 9211, 
9212, 9213, 9214, 9215, 9216, 9217, 9218, 9219, 9220, 9221, 9222, 
9223, 9224, 9225, 9226, 9227, 9228, 9229, 9230, 9231, 9232, 9233, 
9234, 9235, 9236, 9237, 9238, 9239, 9240, 9241, 9242, 9243, 9244, 
9245, 9246, 9247, 9248, 9249, 9250, 9251, 9252, 9253, 9254, 9255, 
9256, 9257, 9258, 9259, 9260, 9261, 9262, 9263, 9264, 9265, 9266, 
9267, 9268, 9269, 9270, 9271, 9272, 9273, 9274, 9275, 9276, 9277, 
9278, 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9286, 9287, 9288, 
9289, 9290, 9291, 9292, 9293, 9294, 9295, 9296, 9297, 9298, 9299, 
9300, 9301, 9302, 9303, 9304, 9305, 9306, 9307, 9308, 9309, 9310, 
9311, 9312, 9313, 9314, 9315, 9316, 9317, 9318, 9319, 9320, 9321, 
9322, 9323, 9324, 9325, 9326, 9327, 9328, 9329, 9330, 9331, 9332, 
9333, 9334, 9335, 9336, 9337, 9338, 9339, 9340, 9341, 9342, 9343, 
9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 
9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 
9366, 9367, 9368, 9369, 9370, 9371, 9372, 9373, 9374, 9375, 9376, 
9377, 9378, 9379, 9380, 9381, 9382, 9383, 9384, 9385, 9386, 9387, 
9388, 9389, 9390, 9391, 9392, 9393, 9394, 9395, 9396, 9397, 9398, 
9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408, 9409, 
9410, 9411, 9412, 9413, 9414, 9415, 9416, 9417, 9418, 9419, 9420, 
9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428, 9429, 9430, 9431, 
9432, 9433, 9434, 9435, 9436, 9437, 9438, 9439, 9440, 9441, 9442, 
9443, 9444, 9445, 9446, 9447, 9448, 9449, 9450, 9451, 9452, 9453, 
9454, 9455, 9456, 9457, 9458, 9459, 9460, 9461, 9462, 9463, 9464, 
9465, 9466, 9467, 9468, 9469, 9470, 9471, 9472, 9473, 9474, 9475, 
9476, 9477, 9478, 9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486, 
9487, 9488, 9489, 9490, 9491, 9492, 9493, 9494, 9495), class = "Date"), 
    wdayno = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L), month = c(1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12), year = c(1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995), yearday = 0:364, 
    no.influ.cases = c(NA, NA, NA, 168L, NA, NA, NA, NA, NA, 
    NA, 199L, NA, NA, NA, NA, NA, NA, 214L, NA, NA, NA, NA, NA, 
    NA, 230L, NA, NA, NA, NA, NA, NA, 267L, NA, NA, NA, NA, NA, 
    NA, 373L, NA, NA, NA, NA, NA, NA, 387L, NA, NA, NA, NA, NA, 
    NA, 443L, NA, NA, NA, NA, NA, NA, 579L, NA, NA, NA, NA, NA, 
    NA, 821L, NA, NA, NA, NA, NA, NA, 1229L, NA, NA, NA, NA, 
    NA, NA, 1014L, NA, NA, NA, NA, NA, NA, 831L, NA, NA, NA, 
    NA, NA, NA, 648L, NA, NA, NA, NA, NA, NA, 257L, NA, NA, NA, 
    NA, NA, NA, 203L, NA, NA, NA, NA, NA, NA, 137L, NA, NA, NA, 
    NA, NA, NA, 78L, NA, NA, NA, NA, NA, NA, 82L, NA, NA, NA, 
    NA, NA, NA, 69L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 63L, NA, NA, NA, NA, NA, NA, 55L, NA, NA, NA, 
    NA, NA, NA, 54L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 27L, NA, NA, NA, NA, NA, NA, 24L, NA, NA, NA, 
    NA, NA, NA, 12L, NA, NA, NA, NA, NA, NA, 10L, NA, NA, NA, 
    NA, NA, NA, 22L, NA, NA, NA, NA, NA, NA, 42L, NA, NA, NA, 
    NA, NA, NA, 32L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 82L, NA, NA, NA, NA, NA, NA, 95L, NA, NA, NA, 
    NA, NA, NA, 91L, NA, NA, NA, NA, NA, NA, 104L, NA, NA, NA, 
    NA, NA, NA, 143L, NA, NA, NA, NA, NA, NA, 114L, NA, NA, NA, 
    NA, NA, NA, 100L, NA, NA, NA, NA, NA, NA, 83L, NA, NA, NA, 
    NA, NA, NA, 113L, NA, NA, NA, NA, NA, NA, 145L, NA, NA, NA, 
    NA, NA, NA, 175L, NA, NA, NA, NA, NA, NA, 222L, NA, NA, NA, 
    NA, NA, NA, 258L, NA, NA, NA, NA, NA, NA, 384L, NA, NA, NA, 
    NA, NA, NA, 755L, NA, NA, NA, NA, NA, NA, 976L, NA, NA, NA, 
    NA, NA, NA, 879L, NA, NA, NA, NA), no.consultations = c(NA, 
    NA, NA, 15093L, NA, NA, NA, NA, NA, NA, 20336L, NA, NA, NA, 
    NA, NA, NA, 20777L, NA, NA, NA, NA, NA, NA, 21108L, NA, NA, 
    NA, NA, NA, NA, 20967L, NA, NA, NA, NA, NA, NA, 20753L, NA, 
    NA, NA, NA, NA, NA, 18782L, NA, NA, NA, NA, NA, NA, 19778L, 
    NA, NA, NA, NA, NA, NA, 19223L, NA, NA, NA, NA, NA, NA, 21188L, 
    NA, NA, NA, NA, NA, NA, 22172L, NA, NA, NA, NA, NA, NA, 21965L, 
    NA, NA, NA, NA, NA, NA, 21768L, NA, NA, NA, NA, NA, NA, 21277L, 
    NA, NA, NA, NA, NA, NA, 16383L, NA, NA, NA, NA, NA, NA, 15337L, 
    NA, NA, NA, NA, NA, NA, 19179L, NA, NA, NA, NA, NA, NA, 18705L, 
    NA, NA, NA, NA, NA, NA, 19623L, NA, NA, NA, NA, NA, NA, 19363L, 
    NA, NA, NA, NA, NA, NA, 16257L, NA, NA, NA, NA, NA, NA, 19219L, 
    NA, NA, NA, NA, NA, NA, 17048L, NA, NA, NA, NA, NA, NA, 19231L, 
    NA, NA, NA, NA, NA, NA, 20023L, NA, NA, NA, NA, NA, NA, 19331L, 
    NA, NA, NA, NA, NA, NA, 18995L, NA, NA, NA, NA, NA, NA, 16571L, 
    NA, NA, NA, NA, NA, NA, 15010L, NA, NA, NA, NA, NA, NA, 13714L, 
    NA, NA, NA, NA, NA, NA, 10451L, NA, NA, NA, NA, NA, NA, 14216L, 
    NA, NA, NA, NA, NA, NA, 16800L, NA, NA, NA, NA, NA, NA, 18305L, 
    NA, NA, NA, NA, NA, NA, 18911L, NA, NA, NA, NA, NA, NA, 17812L, 
    NA, NA, NA, NA, NA, NA, 18665L, NA, NA, NA, NA, NA, NA, 18977L, 
    NA, NA, NA, NA, NA, NA, 19512L, NA, NA, NA, NA, NA, NA, 17424L, 
    NA, NA, NA, NA, NA, NA, 14464L, NA, NA, NA, NA, NA, NA, 16383L, 
    NA, NA, NA, NA, NA, NA, 19916L, NA, NA, NA, NA, NA, NA, 18255L, 
    NA, NA, NA, NA, NA, NA, 20113L, NA, NA, NA, NA, NA, NA, 20084L, 
    NA, NA, NA, NA, NA, NA, 20196L, NA, NA, NA, NA, NA, NA, 20184L, 
    NA, NA, NA, NA, NA, NA, 20261L, NA, NA, NA, NA, NA, NA, 22246L, 
    NA, NA, NA, NA, NA, NA, 23030L, NA, NA, NA, NA, NA, NA, 10487L, 
    NA, NA, NA, NA)), .Names = c("daily.ts", "wdayno", "month", 
"year", "yearday", "no.influ.cases", "no.consultations"), row.names = c(NA, 
-365L), class = "data.frame")

4
To pytanie wymaga jednowymiarowej wersji interpolacji obszar-punkt , która jest dość dobrze zbadana w przemyśle wydobywczym. Przywołane streszczenie wyraźnie stwierdza, że ​​metody geostatystyczne dają „spójne (zachowujące masę ...) prognozy”. Wierzę, że te podejścia pokonują obiekcje @Nick Cox.
whuber

@whuber Dzięki za odniesienie, nie byłem świadomy, że tego rodzaju problem jest dobrze znany w geostatystyce. Czy wiesz o wdrożeniu takich metod w Rpakietach statystycznych lub innych pakietach statystycznych (nie mam dostępu do ArcGIS)? Obawiam się, że bez konkretnie dostępnej implementacji nadal utknąłem.
COOLSerdash

2
Wierzę, że można to zrobić za pomocą kodu pod geoRglmwarunkiem, że bardzo dobrze rozumiesz wariografię i zmianę wsparcia (co jest potrzebne do opracowania modelu korelacji przestrzennej). Podręcznik został opublikowany przez Springera Verlaga jako Geostatistics-Model-Based, Diggle & Ribeiro Jr.
whuber

3
Podział zgrupowanych danych jest powszechną procedurą w demografii. Wyszukiwane hasło to „interpolacja Sprague”; doprowadzi cię do wielu odmian. Dopasowując splajn piątego stopnia do wartości skumulowanych w sposób zapewniający krzywą monotoniczną, ta metoda i jej warianty skutecznie dzielą zgrupowane dane. (Istnieje około 1880 r.) Ogólny termin to „interpolacja oscylacyjna”. Rob Hyndman napisał między innymi o tym temacie: patrz Smith, Hyndman i Wood, Interpolacja splajnu dla zmiennych demograficznych: problem monotoniczności, J. Pop. Res. 21 nr 1 (2004), 95–98.
whuber

2
Twoje pytanie może być również postrzegane jako mapowanie dasymetryczne w jednym wymiarze. Jest to procedura tworzenia szczegółowych map wielkości, które zostały zmierzone na pewnym poziomie agregacji, takim jak standardowe jednostki Spisu Powszechnego. (Można to przypisać przynajmniej do 1936 r .: patrz John K. Wright, Metoda mapowania gęstości zaludnienia: z Cape Cod jako przykład. Przegląd geograficzny 26: 1 (styczeń 1936), str. 103–110). najnowsze podejście (nieco ad hoc , ale z krótką pomocną bibliografią) patrz giscience.org/proceedings/abstracts/giscience2012_paper_179.pdf .
whuber

Odpowiedzi:


8

Udało mi się stworzyć Rfunkcję, która interpoluje punkty o równych odstępach liniowo i splajnami, zachowując przy tym środki (np. Tygodniowe, miesięczne itp.). Wykorzystuje funkcje na.approxi na.splineod zooopakowania i iteracyjnie oblicza wypusty o pożądanych właściwościach. Algorytm opisano w tym artykule .

Oto kod:

interpol.consmean <- function(y, period=7, max.iter=100, tol=1e-4, plot=FALSE) {

  require(zoo)

  if( plot == TRUE ) {
    require(ggplot2)
  }

  y.temp.linear <- matrix(NA, ncol=length(y), nrow=max.iter+1)
  y.temp.linear[1, ] <- y

  y.temp.spline <- y.temp.linear

  y.temp.pred.spline <- matrix(NA, ncol=length(y), nrow=max.iter)
  y.temp.pred.linear <- matrix(NA, ncol=length(y), nrow=max.iter)

  ind.actual <- which(!is.na(y))

  if ( !all(diff(ind.actual)[1]== diff(ind.actual)) ) {
    stop("\"y\" must contain an evenly spaced time series")
  }

  partial <- ifelse((length(y) - ind.actual[length(ind.actual)]) < period/2,
                    TRUE, FALSE)

  for(k in 1:max.iter) {

    y.temp.pred.linear[k,] <- na.approx(y.temp.linear[k, ], na.rm=FALSE, rule=2)
    y.temp.pred.spline[k,] <- na.spline(y.temp.spline[k, ], method="fmm")

    interpol.means.linear <- rollapply(y.temp.pred.linear[k,], width=period, mean,
                                       by=period, align="left", partial=partial) 
    interpol.means.splines <- rollapply(y.temp.pred.spline[k,], width=period, mean,
                                        by=period, align="left", partial=partial) 

    resid.linear <- y.temp.linear[k, ][ ind.actual ] - interpol.means.linear
    resid.spline <- y.temp.spline[k, ][ ind.actual ] - interpol.means.splines

    if ( max(resid.linear, na.rm=TRUE) < tol & max(resid.spline, na.rm=TRUE) < tol ){
      cat("Converged after", k, "iterations with tolerance of", tol, sep=" ")
      break
    }

    y.temp.linear[k+1, ][!is.na(y.temp.linear[k, ])] <-  resid.linear
    y.temp.spline[k+1, ][!is.na(y.temp.spline[k, ])] <-  resid.spline

  }  

  interpol.linear.final <- colSums(y.temp.pred.linear, na.rm=TRUE)
  interpol.spline.final <- colSums(y.temp.pred.spline, na.rm=TRUE)

  if ( plot == TRUE ) {

    plot.frame <- data.frame(
      y=rep(y,2)/7,
      x=rep(1:length(y),2),
      inter.values=c(interpol.linear.final, interpol.spline.final)/7,
      method=c(rep("Linear", length(y)), rep("Spline", length(y)))
    )

    p <- ggplot(data=plot.frame, aes(x=x)) +
      geom_point(aes(y=y, x=x), size=4) +
      geom_line(aes(y=inter.values, color=method), size=1) +
      ylab("y") +
      xlab("x") +
      theme(axis.title.y =element_text(vjust=0.4, size=20, angle=90)) +
      theme(axis.title.x =element_text(vjust=0, size=20, angle=0)) +
      theme(axis.text.x =element_text(size=15, colour = "black")) +
      theme(axis.text.y =element_text(size=17, colour = "black")) +
      theme(panel.background =  element_rect(fill = "grey85", colour = NA),
            panel.grid.major =  element_line(colour = "white"),
            panel.grid.minor =  element_line(colour = "grey90", size = 0.25))+
      scale_color_manual(values=c("#377EB8", "#E41A1C"), 
                         name="Interpolation method",
                         breaks=c("Linear", "Spline"),
                         labels=c("Linear", "Spline")) +
      theme(legend.position="none") +
      theme(strip.text.x = element_text(size=16)) +
      facet_wrap(~ method)

    suppressWarnings(print(p))

  }
  list(linear=interpol.linear.final, spline=interpol.spline.final)
}

Zastosujmy funkcję do przykładowego zestawu danych podanego w pytaniu:

interpolations <- interpol.consmean(y=dat.frame$no.influ.cases, period=7,
                                    max.iter = 100, tol=1e-6, plot=TRUE)

Interpolacje

Zarówno interpolacje liniowe, jak i splajnowe wydają się być w porządku. Sprawdźmy, czy zachowane są tygodniowe środki (skrócone dane wyjściowe):

cbind(dat.frame$no.influ.cases[!is.na(dat.frame$no.influ.cases)],
      rollapply(interpolations$linear, 7, mean, by=7, align="left", partial=F))

      [,1] [,2]
 [1,]  168  168
 [2,]  199  199
 [3,]  214  214
 [4,]  230  230
 [5,]  267  267
 [6,]  373  373
 [7,]  387  387
 [8,]  443  443
 [9,]  579  579
[10,]  821  821
[11,] 1229 1229

1
Powinieneś znaleźć odpowiedni pakiet i zapytać opiekuna, czy chce go dołączyć.
Spacedman

4

Każda linia prosta przechodząca przez średnią w środku zakresu będzie dawać dzienne wartości o wymaganej średniej. Ostatni komentarz Nicka Coxa dotyczący „dzielenia tygodniowych liczb przez liczbę dni” jest szczególnym przypadkiem tego z gradientem = 0.

Możemy to dostosować i wybrać gradient, aby być może nieco płynniej. Oto trzy funkcje R, aby zrobić coś takiego:

interpwk <- function(x,y,delta){
  offset=-3:3
  yout=y+delta*offset
  xout=x+offset
  cbind(xout,yout)
}

get_delta <- function(x,y,pos){
  (y[pos+1]-y[pos-1])/(x[pos+1]-x[pos-1])
}

#' get slope from neighbours
interpall <- function(x,y,delta1,f=1){
  for(i in 2:(length(x)-1)){
    delta=get_delta(x,y,i)
    xyout=interpwk(x[i],y[i],delta/f)
    points(xyout)
  }
}

Dodaj miarę dzienną do swoich danych, następnie wykreśl, a następnie wykreśl interpolator:

> data$day=data$week*7
> plot(data$day,data$no.influ.cases,type="l")
> interpall(data$day,data$no.influ.cases,f=1)

liniowy interpolator zachowujący średnie

Inną możliwością jest ograniczenie ciągłości w weekendy, ale daje to system z tylko jednym stopniem swobody - tzn. Jest całkowicie zdefiniowany przez nachylenie pierwszej sekcji (ponieważ wtedy wszystkie inne sekcje muszą się połączyć). Nie kodowałem tego - masz szansę!

[Apolaty dla lekko podniszczonego kodu R, powinny raczej zwracać punkty niż je rysować]


+1, dzięki. Problem polega na tym, że interpolowane wartości nie są płynne i między tygodniami występują dość gwałtowne kroki. Zredagowałem swoje pytanie, w tym artykuł, który w zasadzie wyjaśnia dokładnie to, czego potrzebuję.
COOLSerdash

Jaki jest tutaj cel? Dlaczego zakładamy, że przypadki grypy różnią się płynnie? Im więcej struktury wstawisz do tych danych przez interpolację, tym bardziej wprowadzona struktura będzie musiała zostać rozplątana na pewnym etapie modelowania. Nie sądzę, abyś skierował mój komentarz z 19 maja: „Nadpisywanie cotygodniowych danych do danych dziennych po prostu stwarza problemy z wprowadzoną zależnością i szalenie nadmiernie optymistycznymi stopniami swobody, które będą niekorzystne dla dopasowania i oceny modelu”.
Nick Cox

Ograniczanie się do średniej jest złe. Średnia, którą tu widzisz, jest średnią próbną i podlega pewnym zmianom statystycznym. Wymyśl model, a następnie użyj interpolatora, który ma średnią jako oczekiwaną, a następnie wykonaj wielokrotne imputacje codziennych danych i dokonaj analizy sto lub więcej razy, aby dowiedzieć się, w jaki sposób ta niepewność wpływa na twoje wnioski.
Spacedman

1
@Spacedman Metody geostatystyczne API, o których wspomniałem (w komentarzu do pytania), obsłużą twój (dość ważny) sprzeciw z aplombem, za pomocą niezerowego komponentu parametru samorodka wariogramu. Geostatystyczne symulacje warunkowe są kontrolowaną metodą wykonywania wielokrotnych imputacji, o których mowa.
whuber

2
Absolutnie. Wygląda na to, że masz jednowymiarową sytuację, która jest prawie dokładnie taka, jak bieżący przykład w podręczniku Diggle & Ribeiro dla geoRglm (przypadki malarii w Gambii, w pobliżu bagien itp., Jako zmienne towarzyszące). Główną komplikacją jest obsługa zmiany wsparcia, ale tak naprawdę nie wpłynęłoby to na prognozę: wpłynęłoby przede wszystkim na oszacowanie wariogramu. Zobacz ncbi.nlm.nih.gov/pmc/articles/PMC2995922 dla niektórych teorii i podobnych przykładów („dwumianowe kriging” przypadków choroby).
whuber

3

n

(Gdyby dane były raczej pomiarami niż liczeniami, skłaniałbym się do modelowania proporcji za pomocą modelu Dirichleta, ale jest to nieco bardziej zaangażowane.)

Fakt, że liczba dni nie zawsze będzie taka sama, nie powinien być szczególnym problemem, o ile wiesz, co to jest - o ile używasz przesunięcia, aby ustawić rzeczy na tym samym „poziomie”.


1
Popraw mnie, jeśli się mylę, ale myślę, że ma to pytanie do tyłu. Nie chodzi o to, jak wygładzać dzienne liczby; to jak zgadywać dzienne liczby na podstawie tygodniowych danych. (Przypuszczalnie plakat ma codzienne dane dotyczące czegoś innego, np. Temperatur.) Poza tym, jak wygląda ten wielomian lub Dirichlet? Dla mnie wygląda bardziej jak Poissona.
Nick Cox

@NickCox Masz absolutną rację, dziękuję za wyjaśnienie: Mam dane tygodniowe i chcę dane dzienne, ponieważ mam inne dane tego dnia (tj. Zmienne meteorologiczne, śmiertelność, zanieczyszczenie powietrza itp.).
COOLSerdash

3
Moje własne pytanie polega na zapytaniu, dlaczego chcesz to zrobić. Zgaduję, jak wyżej, że masz jakieś codzienne dane i chcesz wszystko na tej samej podstawie. Jeśli tak, rozważ zmniejszenie dziennych danych do min, średniej, mediany, maksimum w ciągu tygodni lub cokolwiek, co ma sens naukowy. Nadpisywanie cotygodniowych danych do danych dziennych po prostu stwarza problemy z wprowadzoną zależnością i niezwykle nadmiernie optymistycznymi stopniami swobody, które będą niekorzystne dla dopasowania i oceny modelu.
Nick Cox,

@Nick Cox to absolutnie „zgadywanie”, ale na podstawie podanych informacji wydaje się, że to było po OP.
Glen_b

2
Innym konserwatywnym podejściem jest dzielenie tygodniowych liczb przez liczbę dni. Wiem, że istnieje założenie, że prawdziwy proces będzie przebiegał płynniej, ale zachowa to średnią.
Nick Cox,

3

Dołączę dodatkowe komentarze jako kolejną odpowiedź.

Upłynęło trochę czasu, zanim struktura tego projektu stała się bardziej przejrzysta. Biorąc pod uwagę, że grypa jest teraz ujawniana jako jedna zmienna towarzysząca wśród kilku, to, co robisz, nie wydaje się tak istotne, a przynajmniej nie zasługuje na sceptycyzm wyrażony w niektórych moich wcześniejszych komentarzach. Ponieważ wszystko inne dzieje się codziennie, skrócenie wszystkiego do tygodni wyrzuciłoby zbyt wiele szczegółów.

Pierwotnym celem pytania pozostaje interpolacja, która zachowuje tygodniowy środek, na który jedną (skrajną) odpowiedzią jest to, że tygodniowy środek zachowuje średnią tygodniową. Ponieważ nie jest to zaskakujące, wydaje się nieatrakcyjne lub nierealne, inne metody interpolacji wydają się bardziej atrakcyjne i / lub metody imputacji zaproponowane przez @Spacedman. (Nie jest jasne, czy byłoby to przypisanie tymczasowego smaku, czy interpolacja z dodatkowym smakiem stochastycznym).

Dwie dalsze szczegółowe myśli:

  • Przyjmowanie wartości tygodniowych (podzielonych przez liczbę dni), a następnie wygładzanie za pomocą średnich ważonych, w praktyce prawdopodobnie pozwoliłoby zachować średnią do dobrego przybliżenia.

  • Ponieważ przypadki grypy są liczone, wygładzanie liczby korzeni lub dzienników, a następnie przekształcanie wsteczne może działać lepiej niż tylko wygładzanie liczby.

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.