Literatura dogłębnego uczenia się jest pełna sprytnych sztuczek z wykorzystaniem niestałych wskaźników uczenia się przy opadaniu gradientowym. Rzeczy takie jak rozkład wykładniczy, RMSprop, Adagrad itp. Są łatwe do wdrożenia i są dostępne w każdym pakiecie dogłębnego uczenia się, ale wydają się nie istnieć poza sieciami neuronowymi. Czy jest jakiś powód tego? Jeśli jest tak, że ludzie po prostu się nie przejmują, czy istnieje powód, dla którego nie musimy przejmować się sieciami neuronowymi?