Wiem o zaletach regularyzacji przy budowaniu modeli predykcyjnych (uprzedzenie vs. wariancja, zapobieganie nadmiernemu dopasowaniu). Zastanawiam się jednak, czy dobrym pomysłem jest również regularyzacja (lasso, kalenica, siatka elastyczna), gdy głównym celem modelu regresji jest wnioskowanie o współczynnikach (sprawdzenie, które predyktory są istotne statystycznie). Chciałbym usłyszeć ludzkie myśli, a także linki do wszelkich czasopism naukowych lub artykułów nieakademickich na ten temat.