Mam następujący model liniowy:
Aby rozwiązać problem heteroscedastyczności resztek, próbowałem zastosować transformację logu do zmiennej zależnej jako ale nadal widzę ten sam efekt rozłożenia na resztki. Wartości DV są stosunkowo małe, więc stałe dodanie +1 przed pobraniem dziennika prawdopodobnie nie jest w tym przypadku właściwe.
> summary(Y)
Min. :-0.0005647
1st Qu.: 0.0001066
Median : 0.0003060
Mean : 0.0004617
3rd Qu.: 0.0006333
Max. : 0.0105730
NA's :30.0000000
Jak mogę przekształcić zmienne, aby poprawić błąd prognozowania i wariancję, szczególnie dla skrajnie dopasowanych wartości?