Obecnie piszę algorytm różnicowej prywatności za pomocą mechanizmu Laplace'a.
Niestety nie mam doświadczenia w statystyce, dlatego wiele terminów jest mi nieznanych. Więc teraz potykam się o termin: hałas Laplace'a . Aby ustawić różnicowanie zbioru danych jako prywatne, wszystkie artykuły mówią tylko o dodaniu szumu Laplace'a zgodnie z rozkładem Laplace'a do wartości funkcji.
(k jest różnicową wartością prywatną, f zwróconą wartością przez funkcję oceny, a Y hałasem Laplace'a)
Czy to oznacza, że tworzę losowe zmienne z rozkładu Laplace'a zgodnie z tą funkcją, którą mam z wikipedii https://en.wikipedia.org/wiki/Laplace_distribution ?
AKTUALIZACJA: Narysowałem do 100 losowych zmiennych narysowanych z powyższej funkcji, ale to nie daje mi rozkładu Laplace'a (nawet bliskiego). Ale myślę, że powinien modelować rozkład Laplace'a.
AKTUALIZACJA 2:
Oto moje definicje:
(Mechanizm Laplace'a). Biorąc pod uwagę dowolną funkcję , mechanizm Laplace'a jest zdefiniowany jako: gdzie Y są zmiennymi losowymi iid pochodzącymi z
Jak również:
Aby wygenerować Y (X), powszechnym wyborem jest użycie rozkładu Laplace'a ze średnią zero i parametrem skali Δ (f) / ε