Czy ktoś może wyjaśnić dynamiczne dopasowanie czasu w celu ustalenia podobieństwa szeregów czasowych?


14

Próbuję uchwycić dynamiczny środek dopasowania czasu do porównywania szeregów czasowych razem. Mam trzy zestawy danych szeregów czasowych takie jak to:

T1 <- structure(c(0.000213652387565, 0.000535045478866, 0, 0, 0.000219346347883, 
0.000359669104424, 0.000269469145783, 0.00016051364366, 0.000181950509461, 
0.000385579332948, 0.00078170803205, 0.000747244535774, 0, 0.000622858922454, 
0.000689084895259, 0.000487983408564, 0.000224744353298, 0.000416449765747, 
0.000308388157895, 0.000198906016907, 0.000179549331179, 9.06289650172e-05, 
0.000253506844685, 0.000582896161212, 0.000386473429952, 0.000179839942451, 
0, 0.000275608635737, 0.000622665006227, 0.00036075036075, 0.00029057097196, 
0.000353232073472, 0.000394710874285, 0.000207555002076, 0.000402738622634, 
0, 0.000309693403531, 0.000506521463847, 0.000226988991034, 0.000414164423276, 
9.6590360282e-05, 0.000476689865573, 0.000377572210685, 0.000378967314069, 
9.25240562546e-05, 0.000172309813044, 0.000447627573859, 0, 0.000589333071408, 
0.000191699415317, 0.000362943471554, 0.000287549122975, 0.000311688311688, 
0.000724112961622, 0.000434656621269, 0.00122292103424, 0.00177549812586, 
0.00308008213552, 0.00164338537387, 0.00176056338028, 0.00180072028812, 
0.00258939580764, 0.00217548948513, 0.00493015612161, 0.00336344416683, 
0.00422716412424, 0.00313360554553, 0.00540144648906, 0.00425728829246, 
0.0046828437633, 0.00397219463754, 0.00501656412683, 0.00492700729927, 
0.00224424911165, 0.000634696755994, 0.00120550276557, 0.00125313283208, 
0.00164551010813, 0.00143575017947, 0.00237006940918, 0.00236686390533, 
0.00420336269015, 0.00329840900272, 0.00242005185825, 0.00326554846371, 
0.006217237596, 0.0037103784586, 0.0038714672861, 0.00455830066551, 
0.00361747518783, 0.00304147465438, 0.00476801760499, 0.00569875504121, 
0.00583855136233, 0.0050566695728, 0.0042220072126, 0.00408237321963, 
0.00255222610833, 0.00123507616303, 0.00178136133508, 0.00147434637311, 
0.00126742712294, 0.00186590371937, 0.00177226406735, 0.00249154653853, 
0.00549127279859, 0.00349072202829, 0.00348027842227, 0.00229555236729, 
0.00336862367661, 0.00383477593952, 0.00273999412858, 0.00349618180145, 
0.00376108175875, 0.00383351588171, 0.00368928059028, 0.00480028982882, 
0.00388823582602, 0.00745054380406, 0.0103754506287, 0.00822677278011, 
0.00778350981989, 0.0041831792162, 0.00537228238059, 0.00723645609231, 
0.0144428396845, 0.00893333333333, 0.0106231171714, 0.0158367059652, 
0.01811729548, 0.0207095263821, 0.0211700064641, 0.017604180993, 
0.0165804327375, 0.0188679245283, 0.0191859923629, 0.0269251008595, 
0.0351239669421, 0.0283510318573, 0.0346557651212, 0.0270022042616, 
0.0260845175767, 0.0349758630112, 0.0207069247809, 0.0106362024818, 
0.00981093510475, 0.00916507201128, 0.00887198986058, 0.0073929115025, 
0.00659077291791, 0.00716191546131, 0.00942304513143, 0.0106886280007, 
0.0123527175979, 0.0171022290546, 0.0142909490656, 0.0157642220699, 
0.0265140538974, 0.0194395354708, 0.0241685144124, 0.0229897123662, 
0.017921889568, 0.0155115839714, 0.0145263157895, 0.017609281127, 
0.0157671315949, 0.0190258751903, 0.0138453217956, 0.00958058335108, 
0.0122924304507, 0.00929741151611, 0.00885235535884, 0.00509319462505, 
0.0061314863177, 0.0063104189044, 0.00729117134253, 0.010843373494, 
0.0217755443886, 0.0181687353841, 0.0155402963498, 0.017310022503, 
0.0214746959003, 0.026357827476, 0.0194751217195, 0.0196820590462, 
0.0184317400812, 0.0130208333333, 0.0128666035951, 0.0120045731707, 
0.0122374253228, 0.00874940561103, 0.0114368092263, 0.00922893718369, 
0.00479041916168, 0.00644107774653, 0.00775830595108, 0.00829578041786, 
0.00681348095875, 0.00573782551125, 0.00772002058672, 0.0112488083889, 
0.00908907291456, 0.0157722638969, 0.00994270306707, 0.0134179772039, 
0.0126050420168, 0.0113648781554, 0.0153894803415, 0.0126959699913, 
0.0116655865198, 0.0112065745237, 0.0122006737686, 0.010251878038, 
0.010891174691, 0.0148273273273, 0.0138516532618, 0.0136552722011, 
0.00986993819758, 0.0097852677358, 0.00889011089726, 0.00816723383568, 
0.00917641660931, 0.00884466556108, 0.0182179529646, 0.0183156760639, 
0.0217806648835, 0.0171099125907, 0.0186579938377, 0.019360390076, 
0.0144603654529, 0.0177730696798, 0.0153226598566, 0.0134016909516, 
0.0126480805202, 0.0115501519757, 0.0127156322248, 0.0124326204138, 
0.0240245215806, 0.0130234933606, 0.0144222706691, 0.00854005693371, 
0.0053560967445, 0.00504132231405, 0.00288778877888, 0.00593526847816, 
0.00455653279644, 0.00433014040152, 0.00535770564135, 0.0131095962244, 
0.0126319758673, 0.0154982879798, 0.0125940464508, 0.0169948745616, 
0.0257535512184, 0.0256175663312, 0.0265191262043, 0.0228974403622, 
0.0193122555411, 0.0165794768612, 0.015658837248, 0.0168208578638, 
0.0129912843282, 0.0119498443154, 0.0112663755459, 0.00838112042347, 
0.00925767186696, 0.0113408269771, 0.0210861519924, 0.0156036134684, 
0.0121687119728, 0.011006497812, 0.0107891491985, 0.0134615384615, 
0.0147229755909, 0.015756893641, 0.0176257128046, 0.016776075857, 
0.0169553999263, 0.0179193118984, 0.0190055672874, 0.0183088625509, 
0.0155489923558, 0.0152507401094, 0.0160748342567, 0.0161532350605, 
0.0139190952588, 0.0161469457497, 0.0118186629035, 0.0109259765092, 
0.00950587391265, 0.00928986154533, 0.00815520645549, 0.00702576112412, 
0.00709539362541, 0.00827287768869, 0.0104688211197, 0.0130375888927, 
0.0160891089109, 0.0188415910677, 0.0203265044814, 0.0183175033921, 
0.0139940353292, 0.0124648170487, 0.0131685758095, 0.00957428620277, 
0.0119647893342, 0.00835800104475, 0.0101892285298, 0.00904207699194, 
0.00772134522992, 0.00740740740741, 0.00776823249863, 0.00642254601227, 
0.00484237572883, 0.00361539964823, 0.00414811817078, 0.00358072916667, 
0.00433306007729, 0.00485008818342, 0.00905280804694, 0.00931847250137, 
0.00779271381259, 0.00779912497622, 0.00908230842006, 0.0058152538582, 
0.0102777777778, 0.00807537012113, 0.00648535564854, 0.0145492582731, 
0.00694127317563, 0.00759878419453, 0.00789242911429, 0.00635050701629, 
0.00785233530492, 0.00607964332759, 0.00531968282646, 0.00361944157187, 
0.00305157155935, 0.00276327909119, 0.00318820364651, 0.00184464029514, 
0.00412550211703, 0.00516567972786, 0.00463655399342, 0.00702897308418, 
0.0100714154917, 0.00791168353266, 0.00959190791768, 0.00736, 
0.00738007380074, 0.012573964497, 0.0117919562013, 0.00842919476398, 
0.00778887565289, 0.00623967700496, 0.0062232955601, 0.00447815755803, 
0.00511135450894, 0.00502557659517, 0.00330328263712), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T2 <- structure(c(0, 0, 0, 0, 0.000109673173942, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.66183574879e-05, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.43930526713e-05, 
0, 0, 0, 8.95255147717e-05, 0, 0, 0, 0, 0.000191699415317, 0.000207792207792, 
0, 0, 0, 0.00019727756954, 0.000205338809035, 0.000205423171734, 
0.000704225352113, 0.000450180072029, 0.000493218249075, 0.000120860526952, 
0.000410846343468, 0.000384393619066, 0.000643264105863, 0.000189915487608, 
0.000915499404925, 0.000185099490976, 0.000936568752661, 0.000451385754266, 
0.000757217226692, 0.000273722627737, 0.000187020759304, 0.000211565585331, 
0.000141823854772, 9.63948332369e-05, 0.000117536436295, 0.000287150035894, 
0, 0, 0.000400320256205, 0.000388048117967, 0.000345721694036, 
0.000296868042155, 0.000609533097647, 0.000424043252412, 0.000290360046458, 
0.000546996079861, 0.000556534644282, 0.00036866359447, 0.000275077938749, 
0.000964404699281, 0.00152310035539, 0.00113339145597, 0.00061570938517, 
0.000362877619523, 0.000472634464505, 0.000102923013586, 0.000187511719482, 
0.000294869274622, 0.00011522064754, 0.000248787162582, 0, 0.00035593521979, 
0.000392233771328, 0.000551166636046, 0.000165727543918, 0.000143472022956, 
0.00012030798845, 0.000438260107374, 0.000195713866327, 0.000184009568498, 
0.000537297394108, 0.000365096750639, 0.000102480016397, 0.000452857531021, 
0.000180848177955, 0.000770745910765, 0.00219818869252, 0.000357685773048, 
0.000362023712553, 0.000660501981506, 0.000419709560984, 0.000488949735967, 
0.00177758026886, 4e-04, 0.000475661962898, 0.000879816998064, 
0.0014942099365, 0.00378173960022, 0.00274725274725, 0.00192545729611, 
0.0016462841016, 0.00176238855484, 0.00260780478718, 0.00447289949132, 
0.0034435261708, 0.00290522941294, 0.002694416055, 0.0041329904482, 
0.00729244577412, 0.0296930503689, 0.00982375036117, 0.00453023439039, 
0.00327031170158, 0.00221573169503, 0.00211237853823, 0.00108719286801, 
0.00131815458358, 0.000983008004494, 0.00132253265002, 0.00227790432802, 
0.00247054351957, 0.00307455803228, 0.0029314767314, 0.00222755311857, 
0.00492610837438, 0.00454430699318, 0.00753880266075, 0.00671845475541, 
0.00590490003108, 0.00288356368698, 0.00294736842105, 0.00248601615911, 
0.00197089144936, 0.00326157860404, 0.00302866414278, 0.00202256759634, 
0.00258788009489, 0.00169043845747, 0.00137000737696, 0.000433463372345, 
0.000908368343363, 0.000805585392052, 0.00142653352354, 0.00189328743546, 
0.00558347292016, 0.00161899622234, 0.00162631008312, 0.00276960360048, 
0.00585673524553, 0.00519169329073, 0.0045125282033, 0.00562344544176, 
0.00322815786733, 0.00330528846154, 0.00255439924314, 0.00285823170732, 
0.00240894199268, 0.00218735140276, 0.00201826045171, 0.00168701002282, 
0.000460617227084, 0.00127007166833, 0.00109529025192, 0.000819336337567, 
0.00158170093685, 0.000588494924231, 0.00120089209127, 0.00305052430887, 
0.00161583518481, 0.00211579149837, 0.0010111223458, 0.00346270379455, 
0.00228091236495, 0.00207627581685, 0.00295140718878, 0.0022121765894, 
0.00240718451995, 0.00224131490474, 0.0031867431485, 0.00176756517897, 
0.00233382314807, 0.00178303303303, 0.00169794459339, 0.00162778079219, 
0.000737939304492, 0.00135906496331, 0.000733205022454, 0.000875060768109, 
0.00114705207616, 0.000967385295744, 0.00182179529646, 0.00359130903214, 
0.00420328620558, 0.00446345545843, 0.00376583361862, 0.00659687365553, 
0.00433810963586, 0.00353107344633, 0.00333955407131, 0.00341788091383, 
0.0024939877082, 0.00538428137212, 0.00906989151698, 0.00773778473309, 
0.0210421671775, 0.00859720803541, 0.00511487506289, 0.00406669377796, 
0.00117164616286, 0.00206611570248, 0.00107260726073, 0.00148381711954, 
0.000741761152909, 0.00104973100643, 0.00110305704381, 0.00209753539591, 
0.00452488687783, 0.00486574157506, 0.00850507033039, 0.0101159967629, 
0.0163991223005, 0.0150452373691, 0.0156443766097, 0.0112310639039, 
0.00635593220339, 0.00627766599598, 0.00583041812427, 0.00622371740959, 
0.00624897220852, 0.00420769166036, 0.00305676855895, 0.00291133656815, 
0.00120006857535, 0.00501806503412, 0.00490575781048, 0.00593119810202, 
0.00226874291018, 0.00304999336958, 0.00339087546239, 0.00541958041958, 
0.00445563734986, 0.00431438754455, 0.0038016243304, 0.0037928519329, 
0.00491460867428, 0.00460782305959, 0.00508734881935, 0.00300725278613, 
0.00390896455872, 0.00367811967345, 0.00953591862683, 0.00529614264278, 
0.00243584167029, 0.00427167876976, 0.00291056623743, 0.00227624510607, 
0.00439422473321, 0.00232246538633, 0.00317623830372, 0.00263466042155, 
0.00180200473026, 0.00190912562047, 0.0034896070399, 0.00338638672536, 
0.00548090523338, 0.00697836706211, 0.00720230473752, 0.00746268656716, 
0.00367056664373, 0.0032167269803, 0.00523135203391, 0.00299196443837, 
0.00299119733356, 0.00287306285913, 0.00154657933042, 0.00214861235452, 
0.00163006177076, 0.00157407407407, 0.00137086455858, 0.00124616564417, 
0.000790591955727, 0.00107484854407, 0.00121408336706, 0.00108506944444, 
0.00105398758637, 0.000881834215168, 0.00184409052808, 0.00237529691211, 
0.0013637249172, 0.00190222560396, 0.00264900662252, 0.00156564526951, 
0.00263888888889, 0.00183531139117, 0.00303347280335, 0.0120768352986, 
0.00365330167139, 0.00351443768997, 0.00263080970476, 0.0029703984431, 
0.00265143789517, 0.0014185834431, 0.00150557061126, 0.00144777662875, 
0.00111890957176, 0.000716405690308, 0.000797050911627, 0.000512400081984, 
0.000868526761481, 0.00113392969636, 0.00134609632067, 0.00240013715069, 
0.00128181651712, 0.00110395584177, 0.00156958493198, 0.00208, 
0.00184501845018, 0.00110946745562, 0.000736997262582, 0.00208250694169, 
0.00229084578026, 0.00137639933933, 0.00111462010032, 0.000822518735149, 
0.00200803212851, 0.000987166831194, 0.00041291032964), .Tsp = c(1, 
15.9583333333333, 24), class = "ts")

T3 <- structure(c(0.00192287148809, 0.00149812734082, 0.00192410475681, 
0.00151122625216, 0.00120640491336, 0.00167845582065, 0.00121261115602, 
0.000802568218299, 0.00109170305677, 0.00250626566416, 0.00273597811218, 
0.00242854474127, 0.00160915430002, 0.00124571784491, 0.00192943770673, 
0.00329388800781, 0.00191032700303, 0.00156168662155, 0.00174753289474, 
0.0014917951268, 0.00143639464943, 0.000543773790103, 0.000929525097178, 
0.00141560496294, 0.000966183574879, 0.000719359769805, 0.00190740419629, 
0.00137804317869, 0.00197177251972, 0.001443001443, 0.00203399680372, 
0.00158954433063, 0.00256562068285, 0.00228310502283, 0.00302053966975, 
0.00227352221056, 0.00263239393001, 0.00202608585539, 0.00272386789241, 
0.00269206875129, 0.0027045300879, 0.00276480122033, 0.00405890126487, 
0.00341070582662, 0.00351591413768, 0.00336004135436, 0.00358102059087, 
0.00257289879931, 0.00235733228563, 0.00239624269146, 0.00136103801833, 
0.000862647368926, 0.00145454545455, 0.00168959691045, 0.00246305418719, 
0.0020964360587, 0.00335371868219, 0.00390143737166, 0.00349219391947, 
0.00334507042254, 0.00255102040816, 0.00332922318126, 0.00386753686246, 
0.00246507806081, 0.00432442821449, 0.00312442565705, 0.00408318298357, 
0.00375354756019, 0.00416473854697, 0.00263942103023, 0.0028888688273, 
0.00321817321344, 0.00310218978102, 0.002150738732, 0.00296191819464, 
0.00134732662034, 0.00221708116445, 0.00152797367184, 0.00157932519742, 
0.00220077873709, 0.00207100591716, 0.00260208166533, 0.00310438494373, 
0.00311149524633, 0.00385928454802, 0.00292575886871, 0.00222622707516, 
0.00329074719319, 0.00282614641262, 0.00287542899545, 0.00221198156682, 
0.00311754997249, 0.00315623356128, 0.00287696733796, 0.00296425457716, 
0.00263875450787, 0.00208654631226, 0.00179601096512, 0.00164676821737, 
0.00206262891431, 0.00235895419697, 0.00241963359834, 0.0028610523697, 
0.00516910352976, 0.00160170848905, 0.00254951951363, 0.00275583318023, 
0.00298309579052, 0.00286944045911, 0.00288739172281, 0.00394434096636, 
0.00254428026226, 0.00285214831171, 0.0034924330617, 0.00246440306681, 
0.00266448042632, 0.00389457476678, 0.00253187449136, 0.00171276869059, 
0.00184647850171, 0.00134132164893, 0.00153860077835, 0.000990752972259, 
0.00117518677075, 0.00312927831019, 0.00188867903566, 0.0024, 
0.00269541778976, 0.00263945099419, 0.00242809114681, 0.00378173960022, 
0.00274725274725, 0.00165039196809, 0.00211665098777, 0.00290275761974, 
0.00149017416411, 0.00105244693913, 0.00309917355372, 0.00240432779002, 
0.00297314875035, 0.0015613519471, 0.00196335078534, 0.00227707441479, 
0.00279302706347, 0.00295450068938, 0.00316811446091, 0.00211501661799, 
0.00168990283059, 0.00195694716243, 0.00131815458358, 0.00112343771942, 
0.00214911555629, 0.00157701068863, 0.00171037628278, 0.00230591852421, 
0.00183217295713, 0.00102810143934, 0.00130396986381, 0.00151476899773, 
0.00188470066519, 0.00220449296662, 0.00238267895991, 0.00238639753406, 
0.00147368421053, 0.00113942407292, 0.0018192844148, 0.00152207001522, 
0.00151433207139, 0.00117096018735, 0.000862626698296, 0.00095087163233, 
0.00137000737696, 0.00119202427395, 0.00170319064381, 0.000805585392052, 
0.0012680297987, 0.00189328743546, 0.00186115764005, 0.000719553876597, 
0.000903505601735, 0.000865501125151, 0.00210241778045, 0.00146432374867, 
0.00130625816411, 0.0011895749973, 0.00135374362178, 0.00120192307692, 
0.00160832544939, 0.0015243902439, 0.00240894199268, 0.00218735140276, 
0.00230658337338, 0.00188548179022, 0.0016582220175, 0.00263086274154, 
0.00155166119022, 0.00204834084392, 0.00194670884536, 0.00308959835221, 
0.00154400411734, 0.00152526215443, 0.00343364976772, 0.00269282554337, 
0.00235928547354, 0.00230846919636, 0.00300120048019, 0.00327833023713, 
0.00347844418678, 0.00259690295277, 0.00157392833997, 0.00345536047815, 
0.00336884275699, 0.0023862129916, 0.00216094735932, 0.00478603603604, 
0.00330652368186, 0.00551636824019, 0.00313624204409, 0.00253692126484, 
0.00201631381175, 0.00243072435586, 0.00229410415233, 0.00386954118297, 
0.00298111957602, 0.00305261267732, 0.0038211692778, 0.00334759159383, 
0.00479287915098, 0.0045891294995, 0.00525831471014, 0.00800376647834, 
0.0076613299283, 0.00638604065479, 0.00587868531219, 0.00633955709944, 
0.00453494575849, 0.00617283950617, 0.00314804075884, 0.00425604358189, 
0.00536642629549, 0.00422936152908, 0.00234329232572, 0.00454545454545, 
0.00305280528053, 0.00389501993879, 0.0040267034015, 0.00275554389188, 
0.00409706901986, 0.00506904387345, 0.0065987933635, 0.00594701748063, 
0.00343473994112, 0.00579983814405, 0.00750664048966, 0.00365965233303, 
0.00467423447486, 0.00348250043531, 0.00464471968709, 0.00603621730382, 
0.00358154256205, 0.00445752733389, 0.00501562243052, 0.0035344609947, 
0.00410480349345, 0.00467578297309, 0.00265729470255, 0.00210758731433, 
0.00223771408899, 0.00218998083767, 0.00309374033206, 0.00291738496221, 
0.00184956843403, 0.00297202797203, 0.00329329717164, 0.00318889514162, 
0.00397442543632, 0.00481400437637, 0.002580169554, 0.00440303092361, 
0.00335956997504, 0.00318415000884, 0.00269284225156, 0.00242217637032, 
0.00381436745073, 0.00238326418925, 0.0037407568508, 0.00290474156343, 
0.00335156112189, 0.00227624510607, 0.00376647834275, 0.00223313979455, 
0.00197441840501, 0.00214676034348, 0.00225250591283, 0.00140002545501, 
0.0034896070399, 0.00220115137149, 0.002828854314, 0.00418702023726, 
0.00176056338028, 0.00393487109905, 0.00217939894471, 0.00331724969843, 
0.00234508884279, 0.00282099504189, 0.00239295786685, 0.00269893783737, 
0.00263828238719, 0.00250671441361, 0.00231640356898, 0.00231481481481, 
0.00127947358801, 0.0017254601227, 0.00207530388378, 0.00185655657612, 
0.00131525698098, 0.00227864583333, 0.0018737557091, 0.00220458553792, 
0.00184409052808, 0.00109629088251, 0.00253263198909, 0.00228267072475, 
0.00170293282876, 0.00134198165958, 0.000833333333333, 0.00269179004038, 
0.00198744769874, 0.00209205020921, 0.00146132066855, 0.00113981762918, 
0.00185131053298, 0.00194612311789, 0.00203956761167, 0.00111460127673, 
0.00170631335943, 0.00186142709411, 0.00183094293561, 0.00194452973084, 
0.0014944704593, 0.00153720024595, 0.00184561936815, 0.00151190626181, 
0.000897397547113, 0.00222869878279, 0.00201428309833, 0.00202391904324, 
0.00244157656087, 0.00256, 0.00184501845018, 0.00160256410256, 
0.00115813855549, 0.0016858389528, 0.001741042793, 0.0026610387227, 
0.00167193015047, 0.00201060135259, 0.00219058050383, 0.00233330341919, 
0.000963457435827), .Tsp = c(1, 15.9583333333333, 24), class = "ts")

Wiem, że T1 i T2 są skorelowane i uważam je za prawdę gruntową, więc każda metryka odległości powinna mi powiedzieć, że (T1, T2) są bliżej niż (T2, T3) i (T1, T3). Jednak używając dtwR, otrzymuję następujące informacje:

> dtw(T1, T2, k = TRUE)$distance; dtw(T1, T3, k = TRUE)$distance; dtw(T3, T2, k = TRUE)$distance
[1] 1.107791
[1] 1.568011
[1] 0.4102962

Czy ktoś może wyjaśnić, jak używać dynamicznego dopasowania czasu w przypadku zapytań najbliższego sąsiada?


1
Czy mógłbyś wyjaśnić, co rozumiesz przez „zapytanie najbliższego sąsiada” w tym kontekście i jak to się ma do dtw?
whuber

1
@whuber: Moje wrażenie z DTW było takie, że jest to metryka odległości dla szeregów czasowych. I jest ten dokument wskazujący, że: Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower BoundDaniel Lemire i in. al z kodem podanym na code.google.com/p/lbimproved Jednak staram się zrozumieć tę metrykę przed użyciem.
Legenda

Odpowiedzi:


23

Dynamiczne dopasowanie czasu stanowi szczególne założenie dla twojego zbioru danych: jeden wektor jest nieliniowym rozciągniętym w czasie serią w czasie drugiego. Ale zakłada również, że rzeczywiste wartości są w tej samej skali.

Powiedzmy, że masz: , a ( x ) = 1 sin ( 0,01 x ) , b ( x ) = 1 sin ( 0,01234 x ) , c ( x ) = 1000 sin ( 0,01 x )x=1..10000a(x)=1sin(0.01x)b(x)=1sin(0.01234x)c(x)=1000sin(0.01x) .

abacacab mają wyraźnie różną częstotliwość.

DTW nie jest twoją magiczną bronią do rozwiązania wszystkich twoich potrzeb dopasowania szeregów czasowych. Stawia szczególne założenia na temat podobieństwa, którym jesteś zainteresowany . Jeśli to nie pasuje do twoich danych, nie będzie działać dobrze. Sądząc z serii danych, które udostępniłeś, nie potrzebujesz wyrównania czasowego (co robi DTW), ale w rzeczywistości odpowiednia normalizacja i być może transformacje Fouriera. Odległości przekraczania Treshhold również mogą być dla ciebie dobre, patrz na przykład:

  • Wyszukiwanie podobieństwa w
    szeregach czasowych na podstawie zapytań progowych Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin i Matthias Renz, EDBT 2006

+1 Dziękujemy za sugestie. Czy mógłbyś również wskazać mi pracę nad transformacjami Fouriera? I w końcu zastanawiałem się - czy są jakieś praktyczne wdrożenia, które mogę wypróbować? Mam na myśli niektóre bazy danych, które faktycznie implementują to w działaniu.
Legenda,

1
Poszukując więcej na ten temat, natknąłem się na symboliczną reprezentację SAX autorstwa Keogha i in. al of Univ. Riverside. Czy miałbyś jakieś komentarze na ten temat?
Legenda,

Przyjaciel eksperymentował z SAX dla szeregów czasowych ruchu (tj. Klasyfikacji ruchu). Nie działało to dla niego. Dlatego tego nie zasugerowałem. Keogh produkuje papiery jak szalone, ale IMHO nie są zbyt przekonujące. Musiał zaproponować co najmniej 10 zawodów dystansowych dla szeregów czasowych, które oczywiście przewyższają się wzajemnie.
Ma ZAKOŃCZENIE - Anony-Mousse

2
@ Anony Rozumiem z „Keogh produkuje papiery jak szalone, ale nie są zbyt przekonujące dla IMHO. Musiał zaproponować co najmniej 10 funkcji odległości dla szeregów czasowych, które oczywiście przewyższają się nawzajem. ” NIE zaproponowałem „co najmniej 10 funkcji odległości dla szeregów czasowych”. Zdecydowanie opowiadam się za 2 funkcjami odległości dla szeregów czasowych 1) Odległość euklidesowa (ED): dwa tysiące lat 2) DTW: 50 lat Te dwie miary są używane w 90% moich opracowań i nie zaproponowałem ani nie wymyśliłem. Zaproponowałem niewielkie zmiany w ED i DTW. Mówisz „nie są zbyt przekonujący IMHO”. ...

2
Testuję za pomocą powtarzalnych eksperymentów na każdym publicznym zbiorze danych na świecie i oddaję cały mój kod. Być może niektórzy ludzie tutaj mają trudności z wykorzystaniem jednego z moich pomysłów, ale ponad 2000 osób z powodzeniem skorzystało z jednego z moich pomysłów (ulepszyło Google), więc może problem nie tkwi w pomysłach.

4

W latach 80. dynamiczne dopasowanie czasu było metodą stosowaną do dopasowywania szablonów w rozpoznawaniu mowy. Celem była próba dopasowania szeregów czasowych analizowanej mowy do przechowywanych szablonów, zwykle całych słów. Trudność polega na tym, że ludzie mówią w różnym tempie. Do zarejestrowania nieznanego wzorca w szablonie użyto DTW. Nazywano to dopasowaniem „arkusza gumy”. Zasadniczo przeszukujesz niektóre ograniczone możliwości lokalnego rozciągnięcia szeregów czasowych w celu optymalizacji globalnego dopasowania. Podejście to okazało się prawie tym samym co ukryte modele Markowa.


4

Po pierwsze mówisz „dynamiczna metryka dopasowania czasu”, jednak DTW jest miarą odległości, ale nie metryką (nie przestrzega trójkątnej nierówności).

Artykuł [a] porównuje DTW z 12 alternatywami dla 43 zestawów danych, DTW naprawdę działa bardzo dobrze w przypadku większości problemów.

Jeśli chcesz dowiedzieć się więcej o DTW, możesz rzucić okiem na samouczek Keoghsa http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom.zip (ostrzeżenie 500 meg)

Przełęcz jest sztywna.

Istnieje również samouczek na temat SAX http://www.cs.ucr.edu/~eamonn/SIGKDD_2007.ppt

[a] Xiaoyue Wang, Hui Ding, Goce Trajcevski, Peter Scheuermann, Eamonn J. Keogh: Eksperymentalne porównanie metod reprezentacji i pomiarów odległości dla danych szeregów czasowych CoRR abs / 1012.2789: (2010)


+1 Bardzo dziękuję za odpowiedź. Poprawiłem swoje pytanie. Rozumiem, że jesteś pionierem serii czasowych. Byłoby wspaniale, gdybyś miał jakieś sugestie na temat mojego konkretnego przypadku, które zamieściłem w jednym z komentarzy: Dane szeregów czasowych, które posiadam, pochodzą z wewnętrznej sieci podobnej do Twittera, a sama seria reprezentuje liczbę komunikatów wygenerowanych w konkretnym przypadku temat. Chcę znaleźć inne tematy, które mają podobną oś czasu jak dany. Jeszcze raz dziękuję za poświęcony czas.
Legenda
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.