Klasycznym sposobem analizy głównych składowych (PCA) jest wykonanie macierzy danych wejściowych, których kolumny mają zerową średnią (wtedy PCA może „maksymalizować wariancję”). Można to łatwo osiągnąć poprzez centrowanie kolumn. Jednak gdy matryca wejściowa jest rzadka, matryca środkowa będzie już rzadsza i - jeśli matryca jest bardzo duża - nie będzie już pasować do pamięci. Czy istnieje algorytmiczne rozwiązanie problemu z pamięcią masową?