Zaryzykowałem przy kodowaniu odpowiedzi @Mike Anderson w R. Nie mogłem wymyślić, jak to zrobić za pomocą sapply, więc użyłem pętli. Lekko zmieniłem sondy, aby uzyskać bardziej interesujący wynik, i użyłem „A” i „B” do przedstawienia stanów. Powiedz mi co myślisz.
set.seed(1234)
TransitionMatrix <- data.frame(A=c(0.9,0.7),B=c(0.1,0.3),row.names=c('A','B'))
Series <- c('A',rep(NA,99))
i <- 2
while (i <= length(Series)) {
Series[i] <- ifelse(TransitionMatrix[Series[i-1],'A']>=runif(1),'A','B')
i <- i+1
}
Series <- ifelse(Series=='A',1,0)
> Series
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
[38] 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
/ edit: W odpowiedzi na komentarz Paula, oto bardziej eleganckie sformułowanie
set.seed(1234)
createSeries <- function(n, TransitionMatrix){
stopifnot(is.matrix(TransitionMatrix))
stopifnot(n>0)
Series <- c(1,rep(NA,n-1))
random <- runif(n-1)
for (i in 2:length(Series)){
Series[i] <- TransitionMatrix[Series[i-1]+1,1] >= random[i-1]
}
return(Series)
}
createSeries(100, matrix(c(0.9,0.7,0.1,0.3), ncol=2))
Napisałem oryginalny kod, kiedy dopiero uczyłem się języka R, więc zmniejsz mi trochę luzu. ;-)
Oto jak oszacowałbyś macierz przejścia, biorąc pod uwagę serię:
Series <- createSeries(100000, matrix(c(0.9,0.7,0.1,0.3), ncol=2))
estimateTransMatrix <- function(Series){
require(quantmod)
out <- table(Lag(Series), Series)
return(out/rowSums(out))
}
estimateTransMatrix(Series)
Series
0 1
0 0.1005085 0.8994915
1 0.2994029 0.7005971
Kolejność jest zamieniana względem mojej pierwotnej macierzy przejścia, ale dostaje odpowiednie prawdopodobieństwa.