Marginalna wiarygodność na podstawie danych wyjściowych Gibbsa


13

Odtwarzam od zera wyniki w sekcji 4.2.1

Marginalna wiarygodność na podstawie danych wyjściowych Gibbsa

Siddhartha Chib

Journal of the American Statistics Association, t. 90, nr 432. (grudzień 1995), s. 1313–1321.

Jest to mieszanina modelu normalnego o znanej liczbie k1 składników.

f(xw,μ,σ2)=i=1nj=1kN(xiμj,σj2).()

z=(z1,,zn)1,,kPr(zi=jw)=wjf(xiz,μ,σ2)=N(xiμzi,σzi2)zi()

Zestaw danych jest tworzony przez prędkości galaktyk z konstelacji Corona Borealis.82

set.seed(1701)

x <- c(  9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927,
        19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856,
        19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629,
        20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209,
        22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484,
        23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960,
        26.995, 32.065, 32.789, 34.279 )

nn <- length(x)

Zakładamy, że , i są niezależne a priori z wμjσj2

(w1,,wk)Dir(a1,,ak),μjN(μ0,σ02),σj2IG(ν02,δ02).
k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

Korzystając z twierdzenia Bayesa, pełne warunki warunkowe to w którym z

wμ,σ2,z,xDir(a1+n1,,ak+nk)μjw,σ2,z,xN(njmjσ02+μ0σj2njσ02+σj2,σ02σj2njσ02+σj2)σj2w,μ,z,xIG(ν0+nj2,δ0+δj2)Pr(zi=jw,μ,σ2,x)wj×1σje(xiμj)2/2σj2
nj=|Lj|,mj={1njiLjxiifnj>00otherwise.,δj=iLj(xiμj)2,
Lj={i{1,,n}:zi=j} .

Celem jest obliczenie oszacowania marginalnego prawdopodobieństwa modelu. Metoda Chiba zaczyna się od pierwszego uruchomienia samplera Gibbs z wykorzystaniem pełnych warunków.

burn_in <- 1000
run     <- 15000

cat("First Gibbs run (full):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
mu <- matrix(0, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn)

n <- integer(k)
m <- numeric(k)
de <- numeric(k)

rdirichlet <- function(a) { y <- rgamma(length(a), a, 1); y / sum(y) }

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    m <- sapply(1:k, function(j) sum(x[z[t-1,]==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    mu[t,] <- rnorm(k, mean = (n*m*va0+mu0*va[t-1,])/(n*va0+va[t-1,]), sd = sqrt(va0*va[t-1,]/(n*va0+va[t-1,])))
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mu[t,j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mu[t,], sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

Z pierwszego uruchomienia otrzymujemy przybliżony punkt o maksymalnym prawdopodobieństwie. Ponieważ prawdopodobieństwo jest faktycznie nieograniczone, prawdopodobnie ta procedura daje przybliżoną lokalną mapę MAP.(w,μ,σ2)

w  <- w[(burn_in+1):N,]
mu <- mu[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

Oszacowanie logiczne Chib dotyczące krańcowego prawdopodobieństwa to

logf(x)^=logLx(w,μ,σ2)+logπ(w,μ,σ2)logπ(μx)logπ(σ2μ,x)logπ(wμ,σ2,x).

Mamy już pierwsze dwa warunki.

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

Szacunkowa wartość Rao-Blackwellized dla to i jest łatwo dostępny od pierwszego biegu Gibbs.π(μx)

π(μx)=j=1kN(μj|njmjσ02+μ0σj2njσ02+σj2,σ02σj2njσ02+σj2)p(σ2,zx)dσ2dz,
pi.mu_va.z.x <- function(mu, va, z) {
    n <- tabulate(z, nbins = k)
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,]))))

Szacowane przez Rao-Blackwell oszacowanie wynosi i jest obliczany z drugiego zredukowanego uruchomienia Gibbs, w którym nie są aktualizowane, ale wykonane równa na każdym kroku iteracji.π(σ2μ,x)

π(σ2μ,x)=j=1kIG(σj2|ν0+nj2,δ0+δj2)p(zμ,x)dz,
μjμj
cat("Second Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mus[j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.va_mu.z.x <- function(va, mu, z) {
    n <- tabulate(z, nbins = k)         
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,]))))

W ten sam sposób Rao-Blackwellized oszacowanie jest i jest obliczany z trzeciego zredukowanego uruchomienia Gibbs, w którym i nie są aktualizowane, ale są równe i odpowiednio na każdym kroku iteracji.π(wμ,σ2,x)

π(wμ,σ2,x)=Dir(wa1+n1,,ak+nk)p(zμ,σ2,x)dz,
μjσj2μjσj2
cat("Third Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(vas), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.w_z.x <- function(w, z) {
    n <- tabulate(z, nbins = k)
    exp(lgamma(sum(a+n)) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,]))))

Po tym wszystkim otrzymujemy szacunkowy log który jest większy niż raportowany przez Chib: z błędem Monte Carlo .217.9199224.138.086

Aby sprawdzić, czy w jakiś sposób pomieszałem samplery Gibbs, zaimplementowałem to wszystko za pomocą RJAGS. Poniższy kod daje te same wyniki.

x <- c( 9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330,
       19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166,
       20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814,
       21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263,
       23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960, 26.995, 32.065,
       32.789, 34.279 )

library(rjags)

nn <- length(x)

k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

burn_in <- 10^3

N <- 10^4

full <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mu[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            mu[i] ~ dnorm(mu0, 1/va0)
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, mu0 = mu0, va0 = va0, nu0 = nu0, de0 = de0, a = a)
model <- jags.model(textConnection(full), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("mu", "va", "w", "z"), n.iter = N)

mu <- matrix(samples$mu, nrow = N, byrow = TRUE)
    va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

cat("log-likelihood + log-prior =", chib, "\n")

pi.mu_va.z.x <- function(mu, va, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ =", chib, "\n")

fixed.mu <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, nu0 = nu0, de0 = de0, a = a, mus = mus)
model <- jags.model(textConnection(fixed.mu), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("va", "w", "z"), n.iter = N)

va <- matrix(samples$va, nrow = N, byrow = TRUE)
    w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.va_mu.z.x <- function(va, mu, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ =", chib, "\n")

fixed.mu.and.va <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], 1/vas[z[i]])
            z[i] ~ dcat(w[])
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, a = a, mus = mus, vas = vas)
model <- jags.model(textConnection(fixed.mu.and.va), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("w", "z"), n.iter = N)

w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.w_z.x <- function(w, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    exp(lgamma(sum(a)+nn) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ - log-pi.w_ =", chib, "\n")

Moje pytanie brzmi, czy w powyższym opisie są jakieś nieporozumienia dotyczące metody Chiba lub błędy w jej realizacji.


1
Po uruchomieniu symulacji 100 razy wyniki mieszczą się w zakresie . [218.7655;216.8824]
Zen

Odpowiedzi:


6

Wcześniej występuje niewielki błąd programowy

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

tak jak powinno być

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w)) +
      sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE)) +
      sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

Ponowne uruchomienie kodu w ten sposób prowadzi do

> chib
[1] -228.194

co nie jest wartością wytworzoną w Chib (1995) dla tego przypadku! Jednak w ponownej analizie problemu Neal (1999) wspomina o tym

Według jednego anonimowego sędziego JASA liczba -224.138 dla logarytmu krańcowego prawdopodobieństwa dla modelu trójskładnikowego z nierównymi wariancjami podana w pracy Chiba to „literówka” z poprawną liczbą wynoszącą -228.608.

To rozwiązuje problem rozbieżności.


2
Prof. Christian Robert i Kate Lee: czy wiesz, jak wspaniały jesteś?
Zen

2
Nawiasem mówiąc, jest to zdecydowanie przykład „złej składni”. Nie zapomnę tego.
Zen
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.