Symuluję przepływ nieściśliwy nad cylindrem przy liczbie Reynoldsa 500. Rozwiązuję równanie stokesowskie za pomocą metody korekcji ciśnienia. Moje rozwiązanie staje się niestabilne po pewnym czasie (około 5 sekund).
Próbowałem udoskonalić swoją siatkę, wielkość kroku (0,05) (upewniając się, że CFL <1, mimo że używam metod niejawnych)
Moje warunki brzegowe, siatka i niestabilne wyniki pokazano na załączonych rysunkach. Domena jest około 25 razy większa niż średnica cylindra.
Próbowałem symulować ten problem O grid (który prawie natychmiast stał się niestabilny).
Poniższy link zawiera zdjęcia warunków brzegowych i wyników.
Byłbym wdzięczny, gdyby ktokolwiek mógł podzielić się swoimi przemyśleniami / doświadczeniami na temat tego problemu. Wielkie dzięki.
edytowane:
Przepraszamy za pomyłkę w pisaniu:
Korzystam z następujących warunków brzegowych: granica Neumanna
na granicy Dirichleta
edytowane:
zastosowałem warunki brzegowe prędkości do węzłów wokół granicy dirichleta. Ponadto górny prawy i prawy dolny węzeł narożny to granica dirichleta z prędkością 1.
Po tym, jak głębiej przyjrzałem się wynikom symulacji, zauważam, że niestabilność zaczyna wkradać się na styku dopływu / odpływu.