Czy istnieją wytyczne, jak należy napisać nowy kontener, który będzie zachowywał się jak każdy STL
kontener?
Czy istnieją wytyczne, jak należy napisać nowy kontener, który będzie zachowywał się jak każdy STL
kontener?
Odpowiedzi:
Oto sekwencja pseudo-pojemnik ja poskładane z § 23.2.1 \ 4 Uwaga, że iterator_category
powinien być jeden std::input_iterator_tag
, std::output_iterator_tag
, std::forward_iterator_tag
, std::bidirectional_iterator_tag
, std::random_access_iterator_tag
. Należy również pamiętać, że poniższe informacje są bardziej rygorystyczne pod względem technicznym niż jest to wymagane, ale taka jest idea. Zwróć uwagę, że zdecydowana większość „standardowych” funkcji jest technicznie opcjonalna, ze względu na niesamowity charakter iteratorów.
template <class T, class A = std::allocator<T> >
class X {
public:
typedef A allocator_type;
typedef typename A::value_type value_type;
typedef typename A::reference reference;
typedef typename A::const_reference const_reference;
typedef typename A::difference_type difference_type;
typedef typename A::size_type size_type;
class iterator {
public:
typedef typename A::difference_type difference_type;
typedef typename A::value_type value_type;
typedef typename A::reference reference;
typedef typename A::pointer pointer;
typedef std::random_access_iterator_tag iterator_category; //or another tag
iterator();
iterator(const iterator&);
~iterator();
iterator& operator=(const iterator&);
bool operator==(const iterator&) const;
bool operator!=(const iterator&) const;
bool operator<(const iterator&) const; //optional
bool operator>(const iterator&) const; //optional
bool operator<=(const iterator&) const; //optional
bool operator>=(const iterator&) const; //optional
iterator& operator++();
iterator operator++(int); //optional
iterator& operator--(); //optional
iterator operator--(int); //optional
iterator& operator+=(size_type); //optional
iterator operator+(size_type) const; //optional
friend iterator operator+(size_type, const iterator&); //optional
iterator& operator-=(size_type); //optional
iterator operator-(size_type) const; //optional
difference_type operator-(iterator) const; //optional
reference operator*() const;
pointer operator->() const;
reference operator[](size_type) const; //optional
};
class const_iterator {
public:
typedef typename A::difference_type difference_type;
typedef typename A::value_type value_type;
typedef typename const A::reference reference;
typedef typename const A::pointer pointer;
typedef std::random_access_iterator_tag iterator_category; //or another tag
const_iterator ();
const_iterator (const const_iterator&);
const_iterator (const iterator&);
~const_iterator();
const_iterator& operator=(const const_iterator&);
bool operator==(const const_iterator&) const;
bool operator!=(const const_iterator&) const;
bool operator<(const const_iterator&) const; //optional
bool operator>(const const_iterator&) const; //optional
bool operator<=(const const_iterator&) const; //optional
bool operator>=(const const_iterator&) const; //optional
const_iterator& operator++();
const_iterator operator++(int); //optional
const_iterator& operator--(); //optional
const_iterator operator--(int); //optional
const_iterator& operator+=(size_type); //optional
const_iterator operator+(size_type) const; //optional
friend const_iterator operator+(size_type, const const_iterator&); //optional
const_iterator& operator-=(size_type); //optional
const_iterator operator-(size_type) const; //optional
difference_type operator-(const_iterator) const; //optional
reference operator*() const;
pointer operator->() const;
reference operator[](size_type) const; //optional
};
typedef std::reverse_iterator<iterator> reverse_iterator; //optional
typedef std::reverse_iterator<const_iterator> const_reverse_iterator; //optional
X();
X(const X&);
~X();
X& operator=(const X&);
bool operator==(const X&) const;
bool operator!=(const X&) const;
bool operator<(const X&) const; //optional
bool operator>(const X&) const; //optional
bool operator<=(const X&) const; //optional
bool operator>=(const X&) const; //optional
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;
iterator end();
const_iterator end() const;
const_iterator cend() const;
reverse_iterator rbegin(); //optional
const_reverse_iterator rbegin() const; //optional
const_reverse_iterator crbegin() const; //optional
reverse_iterator rend(); //optional
const_reverse_iterator rend() const; //optional
const_reverse_iterator crend() const; //optional
reference front(); //optional
const_reference front() const; //optional
reference back(); //optional
const_reference back() const; //optional
template<class ...Args>
void emplace_front(Args&&...); //optional
template<class ...Args>
void emplace_back(Args&&...); //optional
void push_front(const T&); //optional
void push_front(T&&); //optional
void push_back(const T&); //optional
void push_back(T&&); //optional
void pop_front(); //optional
void pop_back(); //optional
reference operator[](size_type); //optional
const_reference operator[](size_type) const; //optional
reference at(size_type); //optional
const_reference at(size_type) const; //optional
template<class ...Args>
iterator emplace(const_iterator, Args&&...); //optional
iterator insert(const_iterator, const T&); //optional
iterator insert(const_iterator, T&&); //optional
iterator insert(const_iterator, size_type, T&); //optional
template<class iter>
iterator insert(const_iterator, iter, iter); //optional
iterator insert(const_iterator, std::initializer_list<T>); //optional
iterator erase(const_iterator); //optional
iterator erase(const_iterator, const_iterator); //optional
void clear(); //optional
template<class iter>
void assign(iter, iter); //optional
void assign(std::initializer_list<T>); //optional
void assign(size_type, const T&); //optional
void swap(X&);
size_type size() const;
size_type max_size() const;
bool empty() const;
A get_allocator() const; //optional
};
template <class T, class A = std::allocator<T> >
void swap(X<T,A>&, X<T,A>&); //optional
Poza tym za każdym razem, gdy tworzę kontener, testuję z klasą mniej więcej taką:
#include <cassert>
struct verify;
class tester {
friend verify;
static int livecount;
const tester* self;
public:
tester() :self(this) {++livecount;}
tester(const tester&) :self(this) {++livecount;}
~tester() {assert(self==this);--livecount;}
tester& operator=(const tester& b) {
assert(self==this && b.self == &b);
return *this;
}
void cfunction() const {assert(self==this);}
void mfunction() {assert(self==this);}
};
int tester::livecount=0;
struct verify {
~verify() {assert(tester::livecount==0);}
}verifier;
Twórz pojemniki z tester
przedmiotami i wywołuj każdy z nich function()
podczas testowania pojemnika. Nie twórz żadnych tester
obiektów globalnych . Jeśli twój kontener gdziekolwiek oszukuje, ta tester
klasa to zrobi assert
i będziesz wiedział, że gdzieś przypadkowo oszukiwałeś.
assert(tester::livecount == 0);
. Mmmmm, nadal nie jestem pewien, jak działa ta platforma testera. Czy mógłbyś podać przykład?
memcpy
wydarzyło się żadne nieprawidłowe . (test nie jest niezawodny, ale trochę łapie). livecount
Jest prosty wykrywacz nieszczelności, aby upewnić się, że pojemnik o nazwie równej liczby konstruktorów i destruktorów.
verifier
nie miałeś na myśli varifier
.
std::iterator
nagłówka<iterator>
Będziesz musiał przeczytać sekcję C ++ Standard dotyczącą kontenerów i wymagań, które C ++ Standard nakłada na implementacje kontenerów.
Odpowiedni rozdział w standardzie C ++ 03 to:
Sekcja 23.1 Wymagania dotyczące kontenerów
Odpowiedni rozdział w standardzie C ++ 11 to:
Sekcja 23.2 Wymagania dotyczące kontenerów
Niemal ostateczny projekt standardu C ++ 11 jest dostępny bezpłatnie tutaj .
Równie dobrze możesz przeczytać kilka doskonałych książek, które pomogą Ci zrozumieć wymagania z punktu widzenia użytkownika kontenera. Dwie doskonałe książki, które z łatwością przyszły mi do głowy, to:
Effective STL byScott Meyers &
The C ++ Standard Library: A Tutorial and Reference autorstwaNicolai Josutils
Oto bardzo uproszczona implementacja fałszywego wektora, który jest w zasadzie opakowaniem std::vector
i ma swój własny (ale prawdziwy) iterator, który naśladuje iterator STL. Ponownie, iterator jest bardzo uproszczony, pomijając wiele pojęć, takich jak const_iterator
sprawdzanie poprawności itp.
Kod można uruchomić po wyjęciu z pudełka.
#include <iostream>
#include <string>
#include <vector>
template<typename T>
struct It
{
std::vector<T>& vec_;
int pointer_;
It(std::vector<T>& vec) : vec_{vec}, pointer_{0} {}
It(std::vector<T>& vec, int size) : vec_{vec}, pointer_{size} {}
bool operator!=(const It<T>& other) const
{
return !(*this == other);
}
bool operator==(const It<T>& other) const
{
return pointer_ == other.pointer_;
}
It& operator++()
{
++pointer_;
return *this;
}
T& operator*() const
{
return vec_.at(pointer_);
}
};
template<typename T>
struct Vector
{
std::vector<T> vec_;
void push_back(T item)
{
vec_.push_back(item);
};
It<T> begin()
{
return It<T>(vec_);
}
It<T> end()
{
return It<T>(vec_, vec_.size());
}
};
int main()
{
Vector<int> vec;
vec.push_back(1);
vec.push_back(2);
vec.push_back(3);
bool first = true;
for (It<int> it = vec.begin(); it != vec.end(); ++it)
{
if (first) //modify container once while iterating
{
vec.push_back(4);
first = false;
}
std::cout << *it << '\n'; //print it
(*it)++; //change it
}
for (It<int> it = vec.begin(); it != vec.end(); ++it)
{
std::cout << *it << '\n'; //should see changed value
}
}