Rzucanie mojej [r] odpowiedzi w czapce, zoptymalizowane pod kątem szybkości i działa z dowolną długością x (w przeciwieństwie do pytającego, który był zakodowany na stałe dla długości 20):
### data
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
first <- x[i]
second <- summation[i - 1]
if(sign(first) == sign(second)){
summation <- c(summation, first + second)
enn <- enn + 1
}else{
summation <- c(summation, first)
enn <- 1
}
n_of_seq <- c(n_of_seq, enn)
}
I, aby porównać czasy działania na moim bieżącym (bardzo wolnym) komputerze roboczym, oto wyniki mojego mikrobenchmarka wykorzystującego wszystkie rozwiązania R w tym wątku. Nic dziwnego, że rozwiązania generujące najwięcej kopii i konwersji były zwykle wolniejsze.
Unit: microseconds
expr min lq mean median uq max neval
my_way() 13.301 19.200 23.38352 21.4010 23.401 20604.0 1e+05
author_way() 19.702 31.701 40.12371 36.0015 40.502 24393.9 1e+05
ronak() 856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
ameer() 388.501 452.002 553.08263 491.3000 548.701 456156.6 1e+05
andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
gonzo() 21.901 35.502 48.84946 43.9010 51.001 29519.5 1e+05
-------------- EDYCJA -------------- @nicola zauważył, że moje rozwiązanie nie jest najszybsze dla dłuższych długości x - co powinno być dość oczywiste, ponieważ ciągle tworzę kopie wektorów, używając wywołań takich jak x <- c (x, y). Stworzyłem tylko najszybsze rozwiązanie dla długości = 20 i po prostu oznaczyłem mikrodrukiem tak nisko, jak tylko mogłem.
Aby dokonać bardziej sprawiedliwego porównania, edytowałem wszystkie wersje, aby wygenerować oryginalny kod w sposób, który moim zdaniem byłby najszybszy, ale cieszę się z opinii na ten temat. Oto mój pełny kod testu i wyniki dla mojego bardzo wolnego systemu. Czekam na wszelkie opinie.
# originally benchmarked a few different lengths
for(pie in c(100000)){
my_way<- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
first <- x[i]
second <- summation[i - 1]
if(sign(first) == sign(second)){
summation <- c(summation, first + second)
enn <- enn + 1
}else{
summation <- c(summation, first)
enn <- 1
}
n_of_seq <- c(n_of_seq, enn)
}
# print(summation)
}
author_way <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
sign_indicator <- ifelse(x > 0, 1,-1)
sky <- length(x)
number_of_sequence <- rep(NA, sky)
n <- 1
for (i in 2:sky) {
if (sign_indicator[i] == sign_indicator[i - 1]) {
n <- n + 1
} else{
n <- 1
}
number_of_sequence[i] <- n
}
number_of_sequence[1] <- 1
#############################
summation <- rep(NA, sky)
for (i in 1:sky) {
summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}
}
# other ppls solutions:
ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}
ameer <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
run_lengths <- rle(sign(x))$lengths
n_of_sequence <- run_lengths %>% map(seq) %>% unlist
start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series
map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}
count_and_sum <- function(x){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
runs <- rle((x > 0) * 1)$lengths
groups <- split(x, rep(1:length(runs), runs))
output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
result <- as.data.frame(do.call(rbind, lapply(groups, output)))
`rownames<-`(result, 1:nrow(result))
}
andrew <- function(){
set.seed(100)
df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>%
mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
group_by(seqno) %>% #group by sequences
mutate(n_of_sequence = row_number(), #count row numbers for each group
sum = cumsum(x)) %>% #cumulative sum for each group
ungroup() %>%
select(-seqno)
}
gonzo <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)
}
mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)
}
Jak pokazują te wyniki, dla innych długości niż te, dla których zoptymalizowałem, moja wersja jest powolna. Im dłuższe jest x, tym wolniej robi się absurdalnie wolne we wszystkim powyżej 1000. Moja ulubiona wersja to Ronak, która jest dopiero drugą najszybszą w moim systemie. GoGonzo jest najszybszy na mojej maszynie jak na te dłuższe odcinki.
Unit: milliseconds
expr min lq mean median uq max neval
my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105 10
author_way() 82.2465 83.0873 89.42343 84.78315 85.3638 115.4550 10
ronak() 68.3922 69.3067 70.41924 69.84625 71.3509 74.7070 10
ameer() 481.4566 509.7552 521.19034 514.77000 530.1121 579.4707 10
andrew() 200.9654 202.1898 210.84914 206.20465 211.2006 233.7618 10
gonzo() 27.3317 28.2550 28.66679 28.50535 28.9104 29.9549 10
n_of_sequence
nie jest identyczny z pożądanym