Uzyskaj najbliższą odległość dzięki dwóm ramkom geodezyjnym w pandach


14

Oto moja pierwsza geobramka:

!pip install geopandas
import pandas as pd
import geopandas

city1 = [{'City':"Buenos Aires","Country":"Argentina","Latitude":-34.58,"Longitude":-58.66},
           {'City':"Brasilia","Country":"Brazil","Latitude":-15.78 ,"Longitude":-70.66},
         {'City':"Santiago","Country":"Chile ","Latitude":-33.45 ,"Longitude":-70.66 }]
city2 =  [{'City':"Bogota","Country":"Colombia ","Latitude":4.60 ,"Longitude":-74.08},
           {'City':"Caracas","Country":"Venezuela","Latitude":10.48  ,"Longitude":-66.86}]
city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)
gcity1df = geopandas.GeoDataFrame(
    city1df, geometry=geopandas.points_from_xy(city1df.Longitude, city1df.Latitude))
gcity2df = geopandas.GeoDataFrame(
    city2df, geometry=geopandas.points_from_xy(city2df.Longitude, city2df.Latitude))

Miasto 1

           City    Country  Latitude  Longitude                     geometry
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)
1      Brasilia     Brazil    -15.78     -47.91  POINT (-47.91000 -15.78000)
2      Santiago      Chile    -33.45     -70.66  POINT (-70.66000 -33.45000)

i moja druga geodataframe: City2:

         City    Country  Latitude  Longitude                     geometry
1        Bogota   Colombia      4.60     -74.08    POINT (-74.08000 4.60000)
2       Caracas  Venezuela     10.48     -66.86   POINT (-66.86000 10.48000)

chciałbym trzecią ramkę danych z najbliższym miastem od miasta1 do miasta2 o odległości:

           City    Country  Latitude  Longitude                     geometry    Nearest    Distance
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)    Bogota    111 Km

Oto moje rzeczywiste rozwiązanie wykorzystujące geodjango i dict (ale jest o wiele za długie):

from django.contrib.gis.geos import GEOSGeometry
result = []
dict_result = {}
for city01 in city1 :
  dist = 99999999
  pnt = GEOSGeometry('SRID=4326;POINT( '+str(city01["Latitude"])+' '+str(city01['Longitude'])+')')
  for city02 in city2:
    pnt2 = GEOSGeometry('SRID=4326;POINT('+str(city02['Latitude'])+' '+str(city02['Longitude'])+')')
    distance_test = pnt.distance(pnt2) * 100
    if distance_test < dist :
      dist = distance_test
  result.append(dist)
  dict_result[city01['City']] = city02['City']

Oto moje próby:

from shapely.ops import nearest_points
# unary union of the gpd2 geomtries 
pts3 = gcity2df.geometry.unary_union
def Euclidean_Dist(df1, df2, cols=['x_coord','y_coord']):
    return np.linalg.norm(df1[cols].values - df2[cols].values,
                   axis=1)
def near(point, pts=pts3):
     # find the nearest point and return the corresponding Place value
     nearest = gcity2df.geometry == nearest_points(point, pts)[1]

     return gcity2df[nearest].City
gcity1df['Nearest'] = gcity1df.apply(lambda row: near(row.geometry), axis=1)
gcity1df

tutaj:

    City    Country     Latitude    Longitude   geometry    Nearest
0   Buenos Aires    Argentina   -34.58  -58.66  POINT (-58.66000 -34.58000)     Bogota
1   Brasilia    Brazil  -15.78  -70.66  POINT (-70.66000 -15.78000)     Bogota
2   Santiago    Chile   -33.45  -70.66  POINT (-70.66000 -33.45000)     Bogota

pozdrowienia


Witaj w StackOverflow! Wygląda na to, że masz wrażenie, że StackOverflow jest witryną, w której zamieszczasz problem i dostajesz w zamian trochę kodu. W rzeczywistości tak nie jest. Twoje pytanie najprawdopodobniej zostanie wkrótce zamknięte lub nawet usunięte. Aby temu zapobiec w przyszłości, obejrzyj prezentację i zajrzyj do centrum pomocy . W szczególności zapoznaj się z tym, co jest tutaj uważane za temat
azro

Ponadto, pisząc o DF, prosimy o umieszczenie kodu pyhonona z zawartością DF, dla wszystkich ludzi, którzy chcieliby pomóc ci nie pisać samodzielnie
azro

@azro Zredagowałem i dodałem moje rozwiązanie problemu i moje początkowe dane.
user462794

czy twoje miasta są tylko w Ameryce Południowej? Jeśli nie, jak daleko mogą być od siebie? Ile miast może być w mieście1, a ile w mieście2? Czy ważne jest znalezienie najszybszego rozwiązania, czy też prostsze rozwiązanie działa w rozsądnym czasie? Jeśli tak jest, to jaki byłby rozsądny czas?
Walter Tross

@WalterTross moje miasto jest na całym świecie i szukam szybkiego rozwiązania. Dzięki
462794

Odpowiedzi:


11

Po pierwsze, scalam dwie ramki danych poprzez łączenie krzyżowe. A potem znalazłem odległość między dwoma punktami, używając mapw pythonie. Używam map, ponieważ przez większość czasu jest o wiele szybciej niż apply, itertuples, iterrowsitd. (Reference: https://stackoverflow.com/a/52674448/8205554 )

Na koniec grupuję według ramki danych i pobieram minimalne wartości odległości.

Oto biblioteki,

import pandas as pd
import geopandas
import geopy.distance
from math import radians, cos, sin, asin, sqrt

Oto używane funkcje,

def dist1(p1, p2):
    lon1, lat1, lon2, lat2 = map(radians, [p1.x, p1.y, p2.x, p2.y])

    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 

    return c * 6373

def dist2(p1, p2):
    lon1, lat1, lon2, lat2 = map(radians, [p1[0], p1[1], p2[0], p2[1]])

    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 

    return c * 6373

def dist3(p1, p2):
    x = p1.y, p1.x
    y = p2.y, p2.x

    return geopy.distance.geodesic(x, y).km

def dist4(p1, p2):
    x = p1[1], p1[0]
    y = p2[1], p2[0]

    return geopy.distance.geodesic(x, y).km

I dane,

city1 = [
  {
    'City': 'Buenos Aires',
    'Country': 'Argentina',
    'Latitude': -34.58,
    'Longitude': -58.66
  },
  {
    'City': 'Brasilia',
    'Country': 'Brazil',
    'Latitude': -15.78,
    'Longitude': -70.66
  },
  {
    'City': 'Santiago',
    'Country': 'Chile ',
    'Latitude': -33.45,
    'Longitude': -70.66
  }
]

city2 = [
  {
    'City': 'Bogota',
    'Country': 'Colombia ',
    'Latitude': 4.6,
    'Longitude': -74.08
  },
  {
    'City': 'Caracas',
    'Country': 'Venezuela',
    'Latitude': 10.48,
    'Longitude': -66.86
  }
]


city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)

Połącz krzyżowo z geopandasramkami danych,

gcity1df = geopandas.GeoDataFrame(
    city1df, 
    geometry=geopandas.points_from_xy(city1df.Longitude, city1df.Latitude)
)
gcity2df = geopandas.GeoDataFrame(
    city2df, 
    geometry=geopandas.points_from_xy(city2df.Longitude, city2df.Latitude)
)

# cross join geopandas
gcity1df['key'] = 1
gcity2df['key'] = 1
merged = gcity1df.merge(gcity2df, on='key')

mathFunkcje i geopandas,

# 6.64 ms ± 588 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(map(dist1, merged['geometry_x'], merged['geometry_y']))

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'geometry_x': 'geometry',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude                     geometry  \
2      Brasilia     Brazil    -15.78     -70.66  POINT (-70.66000 -15.78000)   
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)   
4      Santiago     Chile     -33.45     -70.66  POINT (-70.66000 -33.45000)   

  Nearest     Distance  
2  Bogota  2297.922808  
0  Bogota  4648.004515  
4  Bogota  4247.586882 

geopya geopandas,

# 9.99 ms ± 764 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(map(dist3, merged['geometry_x'], merged['geometry_y']))

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'geometry_x': 'geometry',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude                     geometry  \
2      Brasilia     Brazil    -15.78     -70.66  POINT (-70.66000 -15.78000)   
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)   
4      Santiago     Chile     -33.45     -70.66  POINT (-70.66000 -33.45000)   

  Nearest     Distance  
2  Bogota  2285.239605  
0  Bogota  4628.641817  
4  Bogota  4226.710978 

Jeśli chcesz użyć pandaszamiast geopandas,

# cross join pandas
city1df['key'] = 1
city2df['key'] = 1
merged = city1df.merge(city2df, on='key')

Z mathfunkcjami

# 8.65 ms ± 2.21 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(
    map(
        dist2, 
        merged[['Longitude_x', 'Latitude_x']].values, 
        merged[['Longitude_y', 'Latitude_y']].values
    )
)

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude Nearest     Distance
2      Brasilia     Brazil    -15.78     -70.66  Bogota  2297.922808
0  Buenos Aires  Argentina    -34.58     -58.66  Bogota  4648.004515
4      Santiago     Chile     -33.45     -70.66  Bogota  4247.586882

z geopy,

# 9.8 ms ± 807 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(
    map(
        dist4, 
        merged[['Longitude_x', 'Latitude_x']].values, 
        merged[['Longitude_y', 'Latitude_y']].values
    )
)

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude Nearest     Distance
2      Brasilia     Brazil    -15.78     -70.66  Bogota  2285.239605
0  Buenos Aires  Argentina    -34.58     -58.66  Bogota  4628.641817
4      Santiago     Chile     -33.45     -70.66  Bogota  4226.710978

odległości te są obliczane za pomocą przybliżonej formuły, która nie uwzględnia spłaszczania się Ziemi. Stosując geopy.distance.distance()te same 3 Odległości są (w zaokrągleniu) 2285, 4629a 4227km.
Walter Tross

Sprawdzam te wartości za pomocą linku: distance.to/-33.45,-70.66/4.6,-74.08 Co jest nie tak?
E. Zeytinci

poza tym, że bardziej ufam geopy, jako strona ufam więcej edwilliams.org/gccalc.htm , co zgadza się z tym geopy. Strona internetowa NOAA, nhc.noaa.gov/gccalc.shtml , mówi, że jest oparta na tym pierwszym, ale daje różne wyniki. Prawdopodobnie jest oparty na starej wersji tego pierwszego.
Walter Tross

5

Myślę, że dość trudno jest znaleźć rozwiązanie o złożoności czasowej lepszej niż O (m · n) , gdzie m i n są wielkościami city1i city2. Utrzymanie prostego porównania odległości (jedynej operacji O (m · n)) i wykorzystanie wektoryzowanych operacji zapewnianych przez numpy i pandy, prędkość nie powinna stanowić problemu dla żadnego rozsądnego rozmiaru wejściowego.

Chodzi o to, że aby porównać odległości na kuli, możesz porównać odległości między punktami w 3D. Najbliższe miasto to także najbliższe miasto przechodzące przez kulę. Ponadto, zwykle obliczasz pierwiastki kwadratowe, aby obliczyć odległości, ale jeśli musisz je tylko porównać, możesz uniknąć pierwiastków kwadratowych.

from geopy.distance import distance as dist
import numpy as np
import pandas as pd

def find_closest(lat1, lng1, lat2, lng2):
    def x_y_z_of_lat_lng_on_unit_sphere(lat, lng):
        rad_lat, rad_lng = np.radians(lat), np.radians(lng)
        sin_lat, sin_lng = np.sin(rad_lat), np.sin(rad_lng)
        cos_lat, cos_lng = np.cos(rad_lat), np.cos(rad_lng)
        return cos_lat * cos_lng, cos_lat * sin_lng, sin_lat
    x1, y1, z1 = x_y_z_of_lat_lng_on_unit_sphere(lat1, lng1)
    x2, y2, z2 = x_y_z_of_lat_lng_on_unit_sphere(lat2, lng2)
    return pd.Series(map(lambda x, y, z:
                         ((x2-x)**2 + (y2-y)**2 + (z2-z)**2).idxmin(),
                         x1, y1, z1))

city1 = [{"City":"Tokyo",    "Ctry":"JP", "Latitude": 35.68972, "Longitude": 139.69222},
         {"City":"Pretoria", "Ctry":"ZA", "Latitude":-25.71667, "Longitude": 28.28333},
         {"City":"London",   "Ctry":"GB", "Latitude": 51.50722, "Longitude": -0.12574}]
city2 = [{"City":"Seattle",  "Ctry":"US", "Latitude": 47.60972, "Longitude":-122.33306},
         {"City":"Auckland", "Ctry":"NZ", "Latitude":-36.84446, "Longitude": 174.76364}]
city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)

closest = find_closest(city1df.Latitude, city1df.Longitude, city2df.Latitude, city2df.Longitude)

resultdf = city1df.join(city2df, on=closest, rsuffix='2')
km = pd.Series(map(lambda latlng1, latlng2: round(dist(latlng1, latlng2).km),
                   resultdf[['Latitude',  'Longitude' ]].to_numpy(),
                   resultdf[['Latitude2', 'Longitude2']].to_numpy()))
resultdf['Distance'] = km
print(resultdf.to_string())
#        City Ctry  Latitude  Longitude     City2 Ctry2  Latitude2  Longitude2  Distance
# 0     Tokyo   JP  35.68972  139.69222   Seattle    US   47.60972  -122.33306      7715
# 1  Pretoria   ZA -25.71667   28.28333  Auckland    NZ  -36.84446   174.76364     12245
# 2    London   GB  51.50722   -0.12574   Seattle    US   47.60972  -122.33306      7723

Zauważ, że każde rozwiązanie wykorzystujące szerokość i długość geograficzną, jakby były współrzędnymi kartezjańskimi, jest błędne, ponieważ zbliżając się do biegunów południki (linie o równej długości geograficznej) zbliżają się do siebie.


3

To rozwiązanie prawdopodobnie nie jest najszybszym sposobem rozwiązania problemu, ale wierzę, że to wystarczy.

#New dataframe is basicly a copy of first but with more columns
gcity3df = gcity1df.copy()
gcity3df["Nearest"] = None
gcity3df["Distance"] = None

#For each city (row in gcity3df) we will calculate the nearest city from gcity2df and 
fill the Nones with results

for index, row in gcity3df.iterrows():
    #Setting neareast and distance to None, 
    #we will be filling those variables with results

    nearest = None
    distance = None
    for df2index, df2row in gcity2df.iterrows():
        d = row.geometry.distance(df2row.geometry)
        #If df2index city is closer than previous ones, replace nearest with it
        if distance is None or d < distance:
            distance = d
            nearest = df2row.City 
    #In the end we appends the closest city to gdf
    gcity3df.at[index, "Nearest"] = nearest
    gcity3df.at[index, "Distance"] = distance

Jeśli musisz pracować na metrach, a nie stopniach, zawsze możesz ponownie przerzucić warstwę (spowoduje to również usunięcie błędu, który ma na myśli Walter). Możesz to zrobić, gdy gcity3df = gcity3df.to_crs({'init': 'epsg:XXXX'})XXXX to kod epsg dla crs używanego w twoim regionie świata.

Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.