O ile mi wiadomo, nie jest to możliwe, jeśli chcesz mieć obu członków. Ale możesz się specjalizować i mieć tylko jednego członka, gdy typ jest taki sam i pusty:
template <typename T, typename S, typename = void>
struct Empty{
[[no_unique_address]] T t;
[[no_unique_address]] S s;
constexpr T& get_t() noexcept { return t; };
constexpr S& get_s() noexcept { return s; };
};
template<typename TS>
struct Empty<TS, TS, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] TS ts;
constexpr TS& get_t() noexcept { return ts; };
constexpr TS& get_s() noexcept { return ts; };
};
Oczywiście reszta programu, która korzysta z członków, musiałaby zostać zmieniona, aby zająć się przypadkiem, w którym jest tylko jeden członek. Nie powinno mieć znaczenia, który element zostanie użyty w tym przypadku - w końcu jest to obiekt bezstanowy bez unikalnego adresu. Pokazane funkcje składowe powinny to ułatwić.
niestety, sizeof(Empty<Empty<A,A>,A>{})==2
gdzie A jest całkowicie pustą strukturą.
Możesz wprowadzić więcej specjalizacji w celu obsługi rekurencyjnej kompresji pustych par:
template<class TS>
struct Empty<Empty<TS, TS>, TS, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] Empty<TS, TS> ts;
constexpr Empty<TS, TS>& get_t() noexcept { return ts; };
constexpr TS& get_s() noexcept { return ts.get_s(); };
};
template<class TS>
struct Empty<TS, Empty<TS, TS>, typename std::enable_if_t<std::is_empty_v<TS>>>{
[[no_unique_address]] Empty<TS, TS> ts;
constexpr TS& get_t() noexcept { return ts.get_t(); };
constexpr Empty<TS, TS>& get_s() noexcept { return ts; };
};
Co więcej, aby kompresować coś takiego Empty<Empty<A, char>, A>
.
template <typename T, typename S>
struct Empty<Empty<T, S>, S, typename std::enable_if_t<std::is_empty_v<S>>>{
[[no_unique_address]] Empty<T, S> ts;
constexpr Empty<T, S>& get_t() noexcept { return ts; };
constexpr S& get_s() noexcept { return ts.get_s(); };
};
template <typename T, typename S>
struct Empty<Empty<S, T>, S, typename std::enable_if_t<std::is_empty_v<S>>>{
[[no_unique_address]] Empty<S, T> st;
constexpr Empty<S, T>& get_t() noexcept { return st; };
constexpr S& get_s() noexcept { return st.get_t(); };
};
template <typename T, typename S>
struct Empty<T, Empty<T, S>, typename std::enable_if_t<std::is_empty_v<T>>>{
[[no_unique_address]] Empty<T, S> ts;
constexpr T& get_t() noexcept { return ts.get_t(); };
constexpr Empty<T, S> get_s() noexcept { return ts; };
};
template <typename T, typename S>
struct Empty<T, Empty<S, T>, typename std::enable_if_t<std::is_empty_v<T>>>{
[[no_unique_address]] Empty<S, T> st;
constexpr T& get_t() noexcept { return st.get_s(); };
constexpr Empty<S, T> get_s() noexcept { return st; };
};
T
siebie? To generowałoby różne typy. W tej chwili fakt, że obajWrapper
dziedziczymy,T
powstrzymuje cię ...