Oto prosta rekurencja, która przestrzega znanych nam reguł: (1) ustawione są najmniej znaczące bity zarówno X, jak i Y, ponieważ tylko nieparzyste wielokrotności dają nieparzystą wielokrotność; (2) jeśli ustawimy X na najwyższy ustawiony bit B, Y nie może być większe niż sqrt (A); i (3) ustawić bity w X lub Y zgodnie z bieżącym bitem w B.
Poniższy kod w języku Python dał wynik poniżej 300 iteracji dla wszystkich losowych par oprócz jednej, którą wybrałem z przykładowego kodu Matta Timmermansa . Ale pierwsza miała 231.199 iteracji :)
from math import sqrt
def f(A, B):
i = 64
while not ((1<<i) & B):
i = i - 1
X = 1 | (1 << i)
sqrtA = int(sqrt(A))
j = 64
while not ((1<<j) & sqrtA):
j = j - 1
if (j > i):
i = j + 1
memo = {"it": 0, "stop": False, "solution": []}
def g(b, x, y):
memo["it"] = memo["it"] + 1
if memo["stop"]:
return []
if y > sqrtA or y * x > A:
return []
if b == 0:
if x * y == A:
memo["solution"].append((x, y))
memo["stop"] = True
return [(x, y)]
else:
return []
bit = 1 << b
if B & bit:
return g(b - 1, x, y | bit) + g(b - 1, x | bit, y)
else:
return g(b - 1, x | bit, y | bit) + g(b - 1, x, y)
g(i - 1, X, 1)
return memo
vals = [
(6872997084689100999, 2637233646), # 1048 checks with Matt's code
(3461781732514363153, 262193934464), # 8756 checks with Matt's code
(931590259044275343, 5343859294), # 4628 checks with Matt's code
(2390503072583010999, 22219728382), # 5188 checks with Matt's code
(412975927819062465, 9399702487040), # 8324 checks with Matt's code
(9105477787064988985, 211755297373604352), # 3204 checks with Matt's code
(4978113409908739575,67966612030), # 5232 checks with Matt's code
(6175356111962773143,1264664368613886), # 3756 checks with Matt's code
(648518352783802375, 6) # B smaller than sqrt(A)
]
for A, B in vals:
memo = f(A, B)
[(x, y)] = memo["solution"]
print "x, y: %s, %s" % (x, y)
print "A: %s" % A
print "x*y: %s" % (x * y)
print "B: %s" % B
print "x^y: %s" % (x ^ y)
print "%s iterations" % memo["it"]
print ""
Wynik:
x, y: 4251585939, 1616572541
A: 6872997084689100999
x*y: 6872997084689100999
B: 2637233646
x^y: 2637233646
231199 iterations
x, y: 262180735447, 13203799
A: 3461781732514363153
x*y: 3461781732514363153
B: 262193934464
x^y: 262193934464
73 iterations
x, y: 5171068311, 180154313
A: 931590259044275343
x*y: 931590259044275343
B: 5343859294
x^y: 5343859294
257 iterations
x, y: 22180179939, 107776541
A: 2390503072583010999
x*y: 2390503072583010999
B: 22219728382
x^y: 22219728382
67 iterations
x, y: 9399702465439, 43935
A: 412975927819062465
x*y: 412975927819062465
B: 9399702487040
x^y: 9399702487040
85 iterations
x, y: 211755297373604395, 43
A: 9105477787064988985
x*y: 9105477787064988985
B: 211755297373604352
x^y: 211755297373604352
113 iterations
x, y: 68039759325, 73164771
A: 4978113409908739575
x*y: 4978113409908739575
B: 67966612030
x^y: 67966612030
69 iterations
x, y: 1264664368618221, 4883
A: 6175356111962773143
x*y: 6175356111962773143
B: 1264664368613886
x^y: 1264664368613886
99 iterations
x, y: 805306375, 805306369
A: 648518352783802375
x*y: 648518352783802375
B: 6
x^y: 6
59 iterations
X*Y
czyX&Y
?