Jak wspomniałem Davidowi Woleverowi, jest w tym coś więcej niż na pierwszy rzut oka; obie metody wysyłają do is
; możesz to udowodnić, robiąc
min(Timer("x == x", setup="x = 'a' * 1000000").repeat(10, 10000))
#>>> 0.00045456900261342525
min(Timer("x == y", setup="x = 'a' * 1000000; y = 'a' * 1000000").repeat(10, 10000))
#>>> 0.5256857610074803
Pierwszy może być tak szybki, ponieważ sprawdza tożsamość.
Aby dowiedzieć się, dlaczego jedno trwa dłużej niż drugie, prześledźmy wykonanie.
Oba rozpoczynają się ceval.c
od, COMPARE_OP
ponieważ jest to związany z nim kod bajtowy
TARGET(COMPARE_OP) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = cmp_outcome(oparg, left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
PREDICT(POP_JUMP_IF_FALSE);
PREDICT(POP_JUMP_IF_TRUE);
DISPATCH();
}
Wyskakuje wartości ze stosu (technicznie wyskakuje tylko jeden)
PyObject *right = POP();
PyObject *left = TOP();
i uruchamia porównanie:
PyObject *res = cmp_outcome(oparg, left, right);
cmp_outcome
czy to jest:
static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w)
{
int res = 0;
switch (op) {
case PyCmp_IS: ...
case PyCmp_IS_NOT: ...
case PyCmp_IN:
res = PySequence_Contains(w, v);
if (res < 0)
return NULL;
break;
case PyCmp_NOT_IN: ...
case PyCmp_EXC_MATCH: ...
default:
return PyObject_RichCompare(v, w, op);
}
v = res ? Py_True : Py_False;
Py_INCREF(v);
return v;
}
W tym miejscu ścieżki się rozdzielają. PyCmp_IN
Oddział robi
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}
Zauważ, że krotka jest zdefiniowana jako
static PySequenceMethods tuple_as_sequence = {
...
(objobjproc)tuplecontains, /* sq_contains */
};
PyTypeObject PyTuple_Type = {
...
&tuple_as_sequence, /* tp_as_sequence */
...
};
Więc gałąź
if (sqm != NULL && sqm->sq_contains != NULL)
zostanie podjęta i *sqm->sq_contains
, która jest funkcją (objobjproc)tuplecontains
, zostanie podjęta.
To robi
static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
Py_EQ);
return cmp;
}
... Czekaj, czy to nie to, PyObject_RichCompareBool
co wziął drugi oddział? Nie, to było PyObject_RichCompare
.
Ta ścieżka do kodu była krótka, więc prawdopodobnie sprowadza się do szybkości tych dwóch. Porównajmy.
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
...
}
Ścieżka do kodu PyObject_RichCompareBool
prawie natychmiast się kończy. Ponieważ PyObject_RichCompare
tak jest
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) { ... }
if (Py_EnterRecursiveCall(" in comparison"))
return NULL;
res = do_richcompare(v, w, op);
Py_LeaveRecursiveCall();
return res;
}
Py_EnterRecursiveCall
/ Py_LeaveRecursiveCall
Combo nie zostaną podjęte w poprzedniej ścieżki, ale są stosunkowo szybki makra, że będzie zwarcie po zwiększania i zmniejszania kilka globalnych.
do_richcompare
robi:
static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0;
if (v->ob_type != w->ob_type && ...) { ... }
if ((f = v->ob_type->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
...
}
...
}
To robi kilka szybkich kontroli na wezwanie v->ob_type->tp_richcompare
, które jest
PyTypeObject PyUnicode_Type = {
...
PyUnicode_RichCompare, /* tp_richcompare */
...
};
co robi
PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
int result;
PyObject *v;
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
Py_RETURN_NOTIMPLEMENTED;
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
return NULL;
if (left == right) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
v = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
v = Py_False;
break;
default:
...
}
}
else if (...) { ... }
else { ...}
Py_INCREF(v);
return v;
}
Mianowicie te skróty włączone left == right
... ale dopiero po zrobieniu
if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
Podsumowując, wszystkie ścieżki wyglądają mniej więcej tak (ręcznie, rekurencyjnie wstawiając, rozwijając i przycinając znane gałęzie)
POP() # Stack stuff
TOP() #
#
case PyCmp_IN: # Dispatch on operation
#
sqm != NULL # Dispatch to builtin op
sqm->sq_contains != NULL #
*sqm->sq_contains #
#
cmp == 0 # Do comparison in loop
i < Py_SIZE(a) #
v == w #
op == Py_EQ #
++i #
cmp == 0 #
#
res < 0 # Convert to Python-space
res ? Py_True : Py_False #
Py_INCREF(v) #
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
vs
POP() # Stack stuff
TOP() #
#
default: # Dispatch on operation
#
Py_LT <= op # Checking operation
op <= Py_GE #
v == NULL #
w == NULL #
Py_EnterRecursiveCall(...) # Recursive check
#
v->ob_type != w->ob_type # More operation checks
f = v->ob_type->tp_richcompare # Dispatch to builtin op
f != NULL #
#
!PyUnicode_Check(left) # ...More checks
!PyUnicode_Check(right)) #
PyUnicode_READY(left) == -1 #
PyUnicode_READY(right) == -1 #
left == right # Finally, doing comparison
case Py_EQ: # Immediately short circuit
Py_INCREF(v); #
#
res != Py_NotImplemented #
#
Py_LeaveRecursiveCall() # Recursive check
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #
Teraz, PyUnicode_Check
i PyUnicode_READY
są dość tanie, ponieważ tylko sprawdzić kilka pól, ale powinno być oczywiste, że jeden wierzchołek jest mniejszy ścieżka kod, to ma mniej połączeń funkcyjnych tylko jeden switch i jest tylko nieco cieńsze.
TL; DR:
Obie wysyłają do if (left_pointer == right_pointer)
; Różnica polega na tym, ile pracy włożono, aby się tam dostać. in
po prostu robi mniej.
in
wszędzie zamiast==
. To przedwczesna optymalizacja, która szkodzi czytelności.