Czytałem, że funkcje mieszające, takie jak SHA256, nie były tak naprawdę przeznaczone do przechowywania haseł:
https://patrickmn.com/security/storing-passwords-securely/#notpasswordhashes
Zamiast tego działały funkcje adaptacyjnego pozyskiwania kluczy, takie jak PBKDF2, bcrypt lub scrypt. Oto PBKDF2, który Microsoft napisał dla PasswordHasher w swojej bibliotece Microsoft.AspNet.Identity:
/* =======================
* HASHED PASSWORD FORMATS
* =======================
*
* Version 3:
* PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations.
* Format: { 0x01, prf (UInt32), iter count (UInt32), salt length (UInt32), salt, subkey }
* (All UInt32s are stored big-endian.)
*/
public string HashPassword(string password)
{
var prf = KeyDerivationPrf.HMACSHA256;
var rng = RandomNumberGenerator.Create();
const int iterCount = 10000;
const int saltSize = 128 / 8;
const int numBytesRequested = 256 / 8;
// Produce a version 3 (see comment above) text hash.
var salt = new byte[saltSize];
rng.GetBytes(salt);
var subkey = KeyDerivation.Pbkdf2(password, salt, prf, iterCount, numBytesRequested);
var outputBytes = new byte[13 + salt.Length + subkey.Length];
outputBytes[0] = 0x01; // format marker
WriteNetworkByteOrder(outputBytes, 1, (uint)prf);
WriteNetworkByteOrder(outputBytes, 5, iterCount);
WriteNetworkByteOrder(outputBytes, 9, saltSize);
Buffer.BlockCopy(salt, 0, outputBytes, 13, salt.Length);
Buffer.BlockCopy(subkey, 0, outputBytes, 13 + saltSize, subkey.Length);
return Convert.ToBase64String(outputBytes);
}
public bool VerifyHashedPassword(string hashedPassword, string providedPassword)
{
var decodedHashedPassword = Convert.FromBase64String(hashedPassword);
// Wrong version
if (decodedHashedPassword[0] != 0x01)
return false;
// Read header information
var prf = (KeyDerivationPrf)ReadNetworkByteOrder(decodedHashedPassword, 1);
var iterCount = (int)ReadNetworkByteOrder(decodedHashedPassword, 5);
var saltLength = (int)ReadNetworkByteOrder(decodedHashedPassword, 9);
// Read the salt: must be >= 128 bits
if (saltLength < 128 / 8)
{
return false;
}
var salt = new byte[saltLength];
Buffer.BlockCopy(decodedHashedPassword, 13, salt, 0, salt.Length);
// Read the subkey (the rest of the payload): must be >= 128 bits
var subkeyLength = decodedHashedPassword.Length - 13 - salt.Length;
if (subkeyLength < 128 / 8)
{
return false;
}
var expectedSubkey = new byte[subkeyLength];
Buffer.BlockCopy(decodedHashedPassword, 13 + salt.Length, expectedSubkey, 0, expectedSubkey.Length);
// Hash the incoming password and verify it
var actualSubkey = KeyDerivation.Pbkdf2(providedPassword, salt, prf, iterCount, subkeyLength);
return actualSubkey.SequenceEqual(expectedSubkey);
}
private static void WriteNetworkByteOrder(byte[] buffer, int offset, uint value)
{
buffer[offset + 0] = (byte)(value >> 24);
buffer[offset + 1] = (byte)(value >> 16);
buffer[offset + 2] = (byte)(value >> 8);
buffer[offset + 3] = (byte)(value >> 0);
}
private static uint ReadNetworkByteOrder(byte[] buffer, int offset)
{
return ((uint)(buffer[offset + 0]) << 24)
| ((uint)(buffer[offset + 1]) << 16)
| ((uint)(buffer[offset + 2]) << 8)
| ((uint)(buffer[offset + 3]));
}
Uwaga: wymaga to zainstalowanego pakietu Microsoft.AspNetCore.Cryptography.KeyDerivation , który wymaga .NET Standard 2.0 (.NET 4.6.1 lub nowszy). W przypadku wcześniejszych wersji .NET zobacz klasę Crypto z biblioteki System.Web.Helpers Microsoftu.
Aktualizacja z listopada 2015 r.
Zaktualizowana odpowiedź w celu użycia implementacji z innej biblioteki Microsoft, która używa mieszania PBKDF2-HMAC-SHA256 zamiast PBKDF2-HMAC-SHA1 (uwaga: PBKDF2-HMAC-SHA1 jest nadal bezpieczny, jeśli iterCount jest wystarczająco wysoki). Możesz sprawdzić źródło, z którego został skopiowany uproszczony kod, ponieważ faktycznie obsługuje sprawdzanie poprawności i aktualizację skrótów zaimplementowanych z poprzedniej odpowiedzi, przydatne, jeśli chcesz zwiększyć iterCount w przyszłości.