Pandas DataFrame Groupby dwie kolumny i zliczenia


165

Mam ramkę danych pandy w następującym formacie:

df = pd.DataFrame([[1.1, 1.1, 1.1, 2.6, 2.5, 3.4,2.6,2.6,3.4,3.4,2.6,1.1,1.1,3.3], list('AAABBBBABCBDDD'), [1.1, 1.7, 2.5, 2.6, 3.3, 3.8,4.0,4.2,4.3,4.5,4.6,4.7,4.7,4.8], ['x/y/z','x/y','x/y/z/n','x/u','x','x/u/v','x/y/z','x','x/u/v/b','-','x/y','x/y/z','x','x/u/v/w'],['1','3','3','2','4','2','5','3','6','3','5','1','1','1']]).T
df.columns = ['col1','col2','col3','col4','col5']

df:

   col1 col2 col3     col4 col5
0   1.1    A  1.1    x/y/z    1
1   1.1    A  1.7      x/y    3
2   1.1    A  2.5  x/y/z/n    3
3   2.6    B  2.6      x/u    2
4   2.5    B  3.3        x    4
5   3.4    B  3.8    x/u/v    2
6   2.6    B    4    x/y/z    5
7   2.6    A  4.2        x    3
8   3.4    B  4.3  x/u/v/b    6
9   3.4    C  4.5        -    3
10  2.6    B  4.6      x/y    5
11  1.1    D  4.7    x/y/z    1
12  1.1    D  4.7        x    1
13  3.3    D  4.8  x/u/v/w    1

Teraz chcę to pogrupować według dwóch kolumn, takich jak następujące:

df.groupby(['col5','col2']).reset_index()

Wynik:

             index col1 col2 col3     col4 col5
col5 col2                                      
1    A    0      0  1.1    A  1.1    x/y/z    1
     D    0     11  1.1    D  4.7    x/y/z    1
          1     12  1.1    D  4.7        x    1
          2     13  3.3    D  4.8  x/u/v/w    1
2    B    0      3  2.6    B  2.6      x/u    2
          1      5  3.4    B  3.8    x/u/v    2
3    A    0      1  1.1    A  1.7      x/y    3
          1      2  1.1    A  2.5  x/y/z/n    3
          2      7  2.6    A  4.2        x    3
     C    0      9  3.4    C  4.5        -    3
4    B    0      4  2.5    B  3.3        x    4
5    B    0      6  2.6    B    4    x/y/z    5
          1     10  2.6    B  4.6      x/y    5
6    B    0      8  3.4    B  4.3  x/u/v/b    6

Chcę uzyskać liczbę w każdym wierszu, jak poniżej. Oczekiwany wynik:

col5 col2 count
1    A      1
     D      3
2    B      2
etc...

Jak uzyskać oczekiwaną wydajność? I chcę znaleźć największą liczbę dla każdej wartości „col2”?


Bardzo podobne pytanie właśnie pojawiło się wczoraj… patrz tutaj .
bdiamante

Odpowiedzi:


115

Po odpowiedzi @ Andy'ego możesz wykonać następujące czynności, aby rozwiązać drugie pytanie:

In [56]: df.groupby(['col5','col2']).size().reset_index().groupby('col2')[[0]].max()
Out[56]: 
      0
col2   
A     3
B     2
C     1
D     3

1
Czy mogę uzyskać wartości „col5”, takie jak C ... 1 ... 3?
Nilani Algiriyage,

141

Szukasz size:

In [11]: df.groupby(['col5', 'col2']).size()
Out[11]:
col5  col2
1     A       1
      D       3
2     B       2
3     A       3
      C       1
4     B       1
5     B       2
6     B       1
dtype: int64

Aby uzyskać tę samą odpowiedź, co waitkuo („drugie pytanie”), ale nieco bardziej przejrzystą, należy pogrupować według poziomu:

In [12]: df.groupby(['col5', 'col2']).size().groupby(level=1).max()
Out[12]:
col2
A       3
B       2
C       1
D       3
dtype: int64

1
Nie wiem Dlaczego o tym zapomniałem: O, w każdym razie co z moim drugim pytaniem? Znajdź największą liczbę dla każdej wartości „col2” i uzyskaj odpowiednią wartość „col5”?
Nilani Algiriyage,

23

Wstawianie danych do ramki danych pandy i podanie nazwy kolumny .

import pandas as pd
df = pd.DataFrame([['A','C','A','B','C','A','B','B','A','A'], ['ONE','TWO','ONE','ONE','ONE','TWO','ONE','TWO','ONE','THREE']]).T
df.columns = [['Alphabet','Words']]
print(df)   #printing dataframe.

Oto nasze drukowane dane:

wprowadź opis obrazu tutaj

Aby utworzyć grupę ramek danych w pandach i liczniku ,
musisz podać jeszcze jedną kolumnę, która zlicza grupowanie, nazwijmy tę kolumnę jako „COUNTER” w ramce danych .

Lubię to:

df['COUNTER'] =1       #initially, set that counter to 1.
group_data = df.groupby(['Alphabet','Words'])['COUNTER'].sum() #sum function
print(group_data)

WYNIK:

wprowadź opis obrazu tutaj


9
Jak mogę sprawić, aby kolumna Alphabet (np. A) powtarzała się poniżej i nie zostawiła luk w pierwszej kolumnie?
blissweb

jak uzyskać dostęp do wartości każdej grupy, która jest sumą opartą na alfabecie i słowie?
Rahul Goyal

21

Idiomatyczne rozwiązanie wykorzystujące tylko jedną grupę

(df.groupby(['col5', 'col2']).size() 
   .sort_values(ascending=False) 
   .reset_index(name='count') 
   .drop_duplicates(subset='col2'))

  col5 col2  count
0    3    A      3
1    1    D      3
2    5    B      2
6    3    C      1

Wyjaśnienie

Wynik GroupBy sizemetody jest seria z col5i col2w indeksie. W tym miejscu możesz użyć innej metody grupowania, aby znaleźć maksymalną wartość każdej wartości, col2ale nie jest to konieczne. Możesz po prostu posortować wszystkie wartości malejąco, a następnie zachować tylko wiersze z pierwszym wystąpieniem col2z drop_duplicatesmetodą.


Nie ma param nazywa namesię reset_index()w aktualnej wersji pandy: pandas.pydata.org/pandas-docs/stable/generated/...
mmBs


Ok, moja wina. Używałem go podczas pracy z DataFramenie Series. Dzięki za link.
mmBs

2

Jeśli chcesz dodać nową kolumnę (powiedzmy „count_column”) zawierającą liczby grup do ramki danych:

df.count_column=df.groupby(['col5','col2']).col5.transform('count')

(Wybrałem „col5”, ponieważ nie zawiera nan)


-2

Możesz po prostu użyć wbudowanej funkcji count, a następnie funkcji Groupby

df.groupby(['col5','col2']).count()
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.