Wydaje się, że istnieją dwie kwestie, które powodują, że wyjątki podczas przetwarzania wieloprocesowego są irytujące. Pierwszą (zauważoną przez Glenna) jest to, że aby uzyskać natychmiastową odpowiedź , musisz użyć map_async
timeout zamiast map
(tzn. Nie kończyć przetwarzania całej listy). Drugi (zauważony przez Andreya) jest taki, że przetwarzanie wieloprocesowe nie przechwytuje wyjątków, które nie dziedziczą po Exception
(np SystemExit
.). Oto moje rozwiązanie, które rozwiązuje oba te problemy:
import sys
import functools
import traceback
import multiprocessing
def _poolFunctionWrapper(function, arg):
"""Run function under the pool
Wrapper around function to catch exceptions that don't inherit from
Exception (which aren't caught by multiprocessing, so that you end
up hitting the timeout).
"""
try:
return function(arg)
except:
cls, exc, tb = sys.exc_info()
if issubclass(cls, Exception):
raise # No worries
# Need to wrap the exception with something multiprocessing will recognise
import traceback
print "Unhandled exception %s (%s):\n%s" % (cls.__name__, exc, traceback.format_exc())
raise Exception("Unhandled exception: %s (%s)" % (cls.__name__, exc))
def _runPool(pool, timeout, function, iterable):
"""Run the pool
Wrapper around pool.map_async, to handle timeout. This is required so as to
trigger an immediate interrupt on the KeyboardInterrupt (Ctrl-C); see
http://stackoverflow.com/questions/1408356/keyboard-interrupts-with-pythons-multiprocessing-pool
Further wraps the function in _poolFunctionWrapper to catch exceptions
that don't inherit from Exception.
"""
return pool.map_async(functools.partial(_poolFunctionWrapper, function), iterable).get(timeout)
def myMap(function, iterable, numProcesses=1, timeout=9999):
"""Run the function on the iterable, optionally with multiprocessing"""
if numProcesses > 1:
pool = multiprocessing.Pool(processes=numProcesses, maxtasksperchild=1)
mapFunc = functools.partial(_runPool, pool, timeout)
else:
pool = None
mapFunc = map
results = mapFunc(function, iterable)
if pool is not None:
pool.close()
pool.join()
return results