Moja odpowiedź jest podobna do Dave'a Tweeda, co oznacza, że postawiłem ją na bardziej formalnym poziomie. Oczywiście odpowiedziałem później, ale postanowiłem jednak opublikować to, ponieważ ktoś może uznać to podejście za interesujące.
fPn∈Ny1,…,yn, where yi∈{0,1} for all i=1,…,n.
We have that P(y1,…,yn)∈{0,1} and consider the following two sets of Boolean values for the n-dimensional Boolean vector (y1,…,yn)
YY¯={(y1,…,yn)∈{0,1}n|P(y1,…,yn)=1}={(y1,…,yn)∈{0,1}n|P(y1,…,yn)=0}
These set are a partition of the full set of values the input Boolean vector can assume, i.e. Y∪Y¯={0,1}n and Y∩Y¯=∅ (the empty set), thus
P(y1,…,yn)P′(y1,…,yn)={01if (y1,…,yn)∈Y¯if (y1,…,yn)∈Y⇕={10if (y1,…,yn)∈Y¯if (y1,…,yn)∈Y
therefore we always have
P+P′=1∀(y1,…,yn)∈{0,1}n