Jaka jest najbardziej wydajna metoda wykonywania testu FIZZBUZZ w SQL Server?


28

To może nie być całkowicie na temat, ale tutaj jest wolny dzień.

Czy istnieje bardziej skuteczna metoda uzyskania listy liczb od 1 do 49 z kolumną zawierającą słowa FIZZ, w których liczbę można równomiernie podzielić przez 3, BUZZgdy liczbę można równomiernie podzielić przez 5, a FIZZBUZZliczbę można podzielić równo przez zarówno 3 i 5?

Moje próby to (UWAGA, spowoduje to opróżnienie pamięci podręcznej procedur, więc NIE URUCHAMIAJ SIĘ NA SKRZYNI PRODUKCYJNEJ):

DBCC FREEPROCCACHE
GO
/*VARIANT1*/
;WITH t AS (
    SELECT RowNum = ROW_NUMBER() OVER (ORDER BY o.object_id)
    FROM sys.objects o
)
SELECT t.RowNum
    , CASE WHEN ((t.RowNum % 3) + (t.RowNum % 5)) = 0  THEN 'FIZZBUZZ' 
    ELSE 
        CASE WHEN t.RowNum % 3 = 0 THEN 'FIZZ' 
        ELSE 
            CASE WHEN t.RowNum % 5 = 0 THEN 'BUZZ' 
            ELSE '' 
            END 
        END 
    END
FROM t
WHERE t.RowNum < 50;
GO 100

/*VARIANT2*/
DECLARE @t TABLE
(
    Num INT NOT NULL PRIMARY KEY CLUSTERED
);
INSERT INTO @t (Num)
SELECT ROW_NUMBER() OVER (ORDER BY o.object_id)
FROM sys.objects o;

SELECT t.Num
    , CASE WHEN ((t.Num % 3) + (t.Num % 5)) = 0  THEN 'FIZZBUZZ' 
    ELSE 
        CASE WHEN t.Num % 3 = 0 THEN 'FIZZ' 
        ELSE 
            CASE WHEN t.Num % 5 = 0 THEN 'BUZZ' 
            ELSE '' 
            END 
        END 
    END
FROM @t t
WHERE t.Num < 50;
GO 100

SELECT CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
    , MAX(deqs.execution_count)
    , SUM(deqs.total_worker_time)
    , AvgWorkerTime = SUM(deqs.total_worker_time) / MAX(deqs.execution_count)
FROM sys.dm_exec_query_stats deqs
CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) dest
WHERE (dest.text LIKE '%/*VARIANT1*/%'
    OR dest.text LIKE '%/*VARIANT2*/%')
    AND dest.text NOT LIKE '%/*NOT_ME!*/%'
GROUP BY CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
ORDER BY CASE WHEN dest.text LIKE '%/*VARIANT1*/%' THEN 'VARIANT1' ELSE 'VARIANT2' END
/*NOT_ME!*/;

Zgodnie z zaleceniami @AaronBertrand zmodyfikowałem moje próby uruchomienia każdego zestawu instrukcji 100 razy, a następnie pokazałem czasy zarejestrowane przez SQL Server sys.dm_exec_query_stats.

Wyniki:

            Runs    total_time      average time
VARIANT1    100     42533           425
VARIANT2    100     138677          1386

Odpowiedzi:


3

Poniżej znajduje się rozwiązanie T-SQL, które zapisuje pierwszy milion liczb w tabeli tymczasowej. Na moim komputerze zajmuje to około 84 ms. Kluczowe wąskie gardła czekają na zatrzask NESTING_TRANSACTION_FULL i CXPACKEToba nie wiem jak się zająć inaczej niż zmiana MAXDOP. Chciałem planu kwerend, który może wykorzystać równolegle zagnieżdżone pętle i równoległość na podstawie popytu, co udało mi się uzyskać:

wprowadź opis zdjęcia tutaj

Kod jest nieco długi. Krótko mówiąc, łączę ze sobą dwie wyprowadzone tabele zawierające 246 wierszy i 271 wierszy, co daje 66666 wierszy. Te rzędy są połączone z 15-rzędową tabelą pochodną, ​​która wykorzystuje fakt, że wzorzec FIZZBUZZ powtarza się co 15 wierszy. Ostatnie dziesięć wierszy dodaje się za pomocą UNION ALL.

DROP TABLE IF EXISTS #t;

SELECT res.fizzbuzz INTO #t
FROM
(
VALUES
(0),
(15),
(30),
(45),
(60),
(75),
(90),
(105),
(120),
(135),
(150),
(165),
(180),
(195),
(210),
(225),
(240),
(255),
(270),
(285),
(300),
(315),
(330),
(345),
(360),
(375),
(390),
(405),
(420),
(435),
(450),
(465),
(480),
(495),
(510),
(525),
(540),
(555),
(570),
(585),
(600),
(615),
(630),
(645),
(660),
(675),
(690),
(705),
(720),
(735),
(750),
(765),
(780),
(795),
(810),
(825),
(840),
(855),
(870),
(885),
(900),
(915),
(930),
(945),
(960),
(975),
(990),
(1005),
(1020),
(1035),
(1050),
(1065),
(1080),
(1095),
(1110),
(1125),
(1140),
(1155),
(1170),
(1185),
(1200),
(1215),
(1230),
(1245),
(1260),
(1275),
(1290),
(1305),
(1320),
(1335),
(1350),
(1365),
(1380),
(1395),
(1410),
(1425),
(1440),
(1455),
(1470),
(1485),
(1500),
(1515),
(1530),
(1545),
(1560),
(1575),
(1590),
(1605),
(1620),
(1635),
(1650),
(1665),
(1680),
(1695),
(1710),
(1725),
(1740),
(1755),
(1770),
(1785),
(1800),
(1815),
(1830),
(1845),
(1860),
(1875),
(1890),
(1905),
(1920),
(1935),
(1950),
(1965),
(1980),
(1995),
(2010),
(2025),
(2040),
(2055),
(2070),
(2085),
(2100),
(2115),
(2130),
(2145),
(2160),
(2175),
(2190),
(2205),
(2220),
(2235),
(2250),
(2265),
(2280),
(2295),
(2310),
(2325),
(2340),
(2355),
(2370),
(2385),
(2400),
(2415),
(2430),
(2445),
(2460),
(2475),
(2490),
(2505),
(2520),
(2535),
(2550),
(2565),
(2580),
(2595),
(2610),
(2625),
(2640),
(2655),
(2670),
(2685),
(2700),
(2715),
(2730),
(2745),
(2760),
(2775),
(2790),
(2805),
(2820),
(2835),
(2850),
(2865),
(2880),
(2895),
(2910),
(2925),
(2940),
(2955),
(2970),
(2985),
(3000),
(3015),
(3030),
(3045),
(3060),
(3075),
(3090),
(3105),
(3120),
(3135),
(3150),
(3165),
(3180),
(3195),
(3210),
(3225),
(3240),
(3255),
(3270),
(3285),
(3300),
(3315),
(3330),
(3345),
(3360),
(3375),
(3390),
(3405),
(3420),
(3435),
(3450),
(3465),
(3480),
(3495),
(3510),
(3525),
(3540),
(3555),
(3570),
(3585),
(3600),
(3615),
(3630),
(3645),
(3660),
(3675)
) v246 (n)
CROSS JOIN 
(
VALUES
(0),
(15),
(30),
(45),
(60),
(75),
(90),
(105),
(120),
(135),
(150),
(165),
(180),
(195),
(210),
(225),
(240),
(255),
(270),
(285),
(300),
(315),
(330),
(345),
(360),
(375),
(390),
(405),
(420),
(435),
(450),
(465),
(480),
(495),
(510),
(525),
(540),
(555),
(570),
(585),
(600),
(615),
(630),
(645),
(660),
(675),
(690),
(705),
(720),
(735),
(750),
(765),
(780),
(795),
(810),
(825),
(840),
(855),
(870),
(885),
(900),
(915),
(930),
(945),
(960),
(975),
(990),
(1005),
(1020),
(1035),
(1050),
(1065),
(1080),
(1095),
(1110),
(1125),
(1140),
(1155),
(1170),
(1185),
(1200),
(1215),
(1230),
(1245),
(1260),
(1275),
(1290),
(1305),
(1320),
(1335),
(1350),
(1365),
(1380),
(1395),
(1410),
(1425),
(1440),
(1455),
(1470),
(1485),
(1500),
(1515),
(1530),
(1545),
(1560),
(1575),
(1590),
(1605),
(1620),
(1635),
(1650),
(1665),
(1680),
(1695),
(1710),
(1725),
(1740),
(1755),
(1770),
(1785),
(1800),
(1815),
(1830),
(1845),
(1860),
(1875),
(1890),
(1905),
(1920),
(1935),
(1950),
(1965),
(1980),
(1995),
(2010),
(2025),
(2040),
(2055),
(2070),
(2085),
(2100),
(2115),
(2130),
(2145),
(2160),
(2175),
(2190),
(2205),
(2220),
(2235),
(2250),
(2265),
(2280),
(2295),
(2310),
(2325),
(2340),
(2355),
(2370),
(2385),
(2400),
(2415),
(2430),
(2445),
(2460),
(2475),
(2490),
(2505),
(2520),
(2535),
(2550),
(2565),
(2580),
(2595),
(2610),
(2625),
(2640),
(2655),
(2670),
(2685),
(2700),
(2715),
(2730),
(2745),
(2760),
(2775),
(2790),
(2805),
(2820),
(2835),
(2850),
(2865),
(2880),
(2895),
(2910),
(2925),
(2940),
(2955),
(2970),
(2985),
(3000),
(3015),
(3030),
(3045),
(3060),
(3075),
(3090),
(3105),
(3120),
(3135),
(3150),
(3165),
(3180),
(3195),
(3210),
(3225),
(3240),
(3255),
(3270),
(3285),
(3300),
(3315),
(3330),
(3345),
(3360),
(3375),
(3390),
(3405),
(3420),
(3435),
(3450),
(3465),
(3480),
(3495),
(3510),
(3525),
(3540),
(3555),
(3570),
(3585),
(3600),
(3615),
(3630),
(3645),
(3660),
(3675),
(3690),
(3705),
(3720),
(3735),
(3750),
(3765),
(3780),
(3795),
(3810),
(3825),
(3840),
(3855),
(3870),
(3885),
(3900),
(3915),
(3930),
(3945),
(3960),
(3975),
(3990),
(4005),
(4020),
(4035),
(4050)
) v271 (n)
CROSS APPLY
(
VALUES
(CAST(v246.n * 271 + v271.n + 1 AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 2 AS CHAR(8))),
(CAST('FIZZ' AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 4 AS CHAR(8))),
(CAST('BUZZ' AS CHAR(8))),
(CAST('FIZZ' AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 7 AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 8 AS CHAR(8))),
(CAST('FIZZ' AS CHAR(8))),
(CAST('BUZZ' AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 11 AS CHAR(8))),
(CAST('FIZZ' AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 13 AS CHAR(8))),
(CAST(v246.n * 271 + v271.n + 14 AS CHAR(8))),
(CAST('FIZZBUZZ' AS CHAR(8)))
) res (fizzbuzz)

UNION ALL

SELECT v.fizzbuzz
FROM (
VALUES 
('999991'),
('999992'),
('FIZZ'),
('999994'),
('BUZZ'),
('FIZZ'),
('999997'),
('999998'),
('FIZZ'),
('BUZZ')
) v (fizzbuzz)

OPTION (MAXDOP 6, NO_PERFORMANCE_SPOOL);

To trochę oszustwo, że rozwiązanie nie wykonuje żadnych obliczeń, ale nie było to tak naprawdę wymaganym wymogiem. W tym rozwiązaniu wykorzystuje się myślenie „po wyjęciu z pudełka”, które jest znakiem wielkości. Chciałbym zobaczyć to z dwiema kolumnami w danych wyjściowych, aby można było łatwiej potwierdzić poprawność.
Max Vernon

@ MaxVernon Uczciwy punkt, biorąc pod uwagę, że rzędy nie są uporządkowane, naprawdę nie jest rozsądne, aby nie podawać liczby dla wszystkich wierszy. Możesz go edytować.
Joe Obbish

15

Za pomocą tabeli zoptymalizowanej pod kątem pamięci SQL Server 2014 i natywnie skompilowanej procedury:

-- Setup
CREATE DATABASE InMem;
GO
ALTER DATABASE InMem
ADD FILEGROUP FG1
CONTAINS MEMORY_OPTIMIZED_DATA;
GO
ALTER DATABASE InMem
ADD FILE 
(
    NAME = 'FN1', 
    -- Change to suit your system
    FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\FN1.mod'
)
TO FILEGROUP FG1;
GO
USE InMem;
GO
CREATE TYPE dbo.FizzBuzzTableType AS TABLE 
(
    n integer NOT NULL INDEX i,
    FizzBuzz varchar(8) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON);
GO

Procedura natywna:

CREATE PROCEDURE dbo.FizzBuzz
WITH 
    NATIVE_COMPILATION, 
    SCHEMABINDING, 
    EXECUTE AS OWNER
AS
BEGIN ATOMIC 
WITH 
(
    TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
    LANGUAGE = N'english'
)   
    DECLARE @n AS dbo.FizzBuzzTableType;

    DECLARE @i integer = 1;
    WHILE @i < 50
    BEGIN
        IF @i % 15 = 0
        BEGIN
            INSERT @n (n, FizzBuzz) 
            VALUES (@i, 'FizzBuzz')
        END
        ELSE 
        BEGIN
            IF @i % 3 = 0
            BEGIN
                INSERT @n (n, FizzBuzz)
                VALUES (@i, 'Fizz')
            END
            ELSE 
            BEGIN
                IF @i % 5 = 0
                BEGIN
                    INSERT @n (n, FizzBuzz) 
                    VALUES (@i, 'Buzz')
                END
                ELSE
                BEGIN
                    INSERT @n (n, FizzBuzz) 
                    VALUES (@i, CONVERT(varchar(8), @i));
                END;
            END;
        END;

        SET @i += 1;
    END;

    SELECT
        N.n, 
        N.FizzBuzz
    FROM @n AS N
    ORDER BY
        N.n;
END;

Test:

SET NOCOUNT ON;
PRINT SYSUTCDATETIME();
GO
DECLARE @T AS dbo.FizzBuzzTableType;

INSERT @T (n, FizzBuzz)
EXECUTE dbo.FizzBuzz;
GO 100

PRINT SYSUTCDATETIME();

Typowe wyniki:

-- 95ms for 100 iterations, < 1ms each
2014-12-31 10:07:13.7993355
Beginning execution loop
Batch execution completed 100 times.
2014-12-31 10:07:13.8943409

Zapisuje to wynik procedury w zmiennej tabeli w pamięci, ponieważ w przeciwnym razie testujemy tylko szybkość wyświetlania wyników w SSMS.

Milion wierszy

Powyższa natywna procedura zajmuje około 12 sekund na milionie numerów. Istnieje wiele szybszych sposobów, aby zrobić to samo w T-SQL. Jeden z nich napisałem wcześniej. Działa na moim laptopie w około 500 ms w milionie rzędów, gdy zostanie osiągnięty zamierzony plan równoległy:

IF  OBJECT_ID(N'tempdb..#Result', N'U') IS NOT NULL
    DROP TABLE #Result;

IF  OBJECT_ID(N'tempdb..#Thousand', N'U') IS NOT NULL
    DROP TABLE #Thousand;

SET NOCOUNT ON;
DECLARE @start datetime2(7) = SYSUTCDATETIME();

CREATE TABLE #Thousand 
(
    n integer NOT NULL,

    CONSTRAINT PK_#Thousand
    PRIMARY KEY CLUSTERED (n)
);

-- Add 1,000 rows numbered 0-999 to #Thousand
WITH 
    L1 (n) AS
(
    SELECT  V.n
    FROM    
    (
        VALUES  (0), (1), (2), (3), (4),
                (5), (6), (7), (8), (9)
    ) AS V (n)
),
    Thousand AS
(
    SELECT  n = 
        CONVERT
        (
            integer,
            ROW_NUMBER() OVER (
            ORDER BY (SELECT NULL))
            - 1
        )
    FROM L1
    CROSS JOIN L1 AS L2
    CROSS JOIN L1 AS L3
)
INSERT #Thousand (n)
SELECT n
FROM Thousand;

-- To hold the Fizz Buzz output
CREATE TABLE #Result 
(
    n integer NOT NULL, 
    result varchar(8) NOT NULL
);

INSERT #Result
SELECT 
    Million.n, 
    Million.result
FROM
(
    -- Modulo operation to encourage few outer rows parallelism
    SELECT  n
    FROM    #Thousand
    WHERE   n % 1 = 0
) AS T1
-- Outer Apply to keep the Compute Scalar parallel
OUTER APPLY
(
    SELECT
        F2.n, 
        F2.result
    FROM #Thousand AS T2
    CROSS APPLY
    (
        -- Row numbers 1 to 1,000,000
        SELECT  (T1.n * 1000) + T2.n + 1
    ) AS F1 (n)
    CROSS APPLY
    (
        -- The Fizz Buzz bit
        SELECT
            F1.n,
            result =
                CASE 
                    WHEN F1.n % 15 = 0 THEN 'FizzBuzz'
                    WHEN F1.n % 3 = 0 THEN 'Buzz'
                    WHEN F1.n % 5 = 0 THEN 'Fizz'
                    ELSE CONVERT(varchar(8), F1.n)
                END
    ) AS F2
) AS Million
OPTION  (MAXDOP 4, QUERYTRACEON 9481);

PRINT DATEDIFF(MILLISECOND, @start, SYSUTCDATETIME());

1
Powiedziałeś „Zastosuj zewnętrznie, aby równolegle skalować obliczenia” - czy możesz wskazać mi coś na ten temat?
Max Vernon,

3
Nie. Zdarza się tak, że zastosowanie zewnętrznego może czasem pomóc w wychodzeniu skalarów obliczeniowych ze strefy równoległej. Zupełnie nieudokumentowane, może zmienić się każdego dnia itp.
Paul White mówi GoFundMonica

11

Ten działa na moim komputerze tak samo jak twój pierwszy (0ms). Nie jestem pewien, czy skalowałby się szybciej, czy nie.

;WITH t AS (
    SELECT RowNum = ROW_NUMBER() OVER (ORDER BY o.object_id)
    FROM sys.objects o
)
SELECT t.RowNum
    , Cxa.Fizz + CxB.Buzz
FROM t
CROSS APPLY (SELECT CASE WHEN t.RowNum % 3 = 0 THEN 'FIZZ' ELSE '' END) CxA(Fizz)
CROSS APPLY (SELECT CASE WHEN t.RowNum % 5 = 0 THEN 'BUZZ' ELSE '' END) CxB(Buzz)
WHERE t.RowNum < 50;

10

Najlepsza wersja, jaką wymyśliłem, działa na moim komputerze w 30 ms:

WITH t AS (
    SELECT 1 As RowNum
    Union ALL
    Select RowNum + 1
    From t
    Where RowNum < 49
)
SELECT t.RowNum
, SubString('FIZZ', (t.RowNum % 3)*10, 5) + SubString('BUZZ', (t.RowNum % 5)*10, 5)
FROM t;

6

Według strony sqlfiddle.com zajmuje to 7 ms:

select coalesce(fizz + buzz, fizz, buzz, cast(n as varchar)) as FizzBuzz
  from (
    select n0 + 3 * n3 + 9 * n9 + 27 * n27 + 81 * n81 as n
        from
            (select 0 as n0  union all select 1 union all select 2 as n0)  as n0,
            (select 0 as n3  union all select 1 union all select 2 as n3)  as n3,
            (select 0 as n9  union all select 1 union all select 2 as n9)  as n9,
            (select 0 as n27 union all select 1 union all select 2 as n27) as n27,
            (select 0 as n81 union all select 1                    as n81) as n81
  ) as stupidalias1
  left outer join
    (select 3 as fizzstep, 'Fizz' as fizz) as stupidalias2 on n % fizzstep = 0
  left outer join
    (select 5 as buzzstep, 'Buzz' as buzz) as stupidalias3 on n % buzzstep = 0
  where n between 1 and 100
  order by n;

Nie używa żadnych tabel, przechowywanych procesów ani CTE.


6

Mam rozsądną wersję natywnie skompilowanego przechowywanego proc działającego dla 1 miliona wierszy w ~ 500-800ms. To jest konwersja T-SQL algorytmu bitowego, który przeprowadziłem stąd, z niewielką pomocą bloga Adama Machanica na temat operacji bitowych tutaj .

(Mam nadzieję) przestrzegam tych samych zasad, co @ PaulWhite's 500ms / 1 milion rzędów proc, tj. Generuję wyniki, ale ich nie wyświetlam / nie przekazuję ich w ramach pomiaru czasu. Muszą to być indeksy skrótów w tabelach w pamięci dla prędkości i rozmiarów wiaderka wynoszących 4 194 304 lub 8 388,608, które wydawały mi się najlepszym miejscem, chociaż oczywiście daje to dużą liczbę pustych wiader.

USE hekatondb
GO

--NB: SQLCMD script, Enable via: Query menu > SQLCMD Mode
:setvar bucketCount 4194304
--:setvar bucketCount 8388608

IF OBJECT_ID('dbo.usp_hekatonFizzBuzz') IS NOT NULL
DROP PROC dbo.usp_hekatonFizzBuzz 
GO
IF OBJECT_ID('dbo.FizzBuzz') IS NOT NULL
DROP TABLE dbo.FizzBuzz
GO


IF OBJECT_ID('dbo.FizzBuzz') IS NULL
CREATE TABLE dbo.FizzBuzz (
    Number      INT NOT NULL,
    Result      VARCHAR(8) NULL,

    CONSTRAINT PK_FizzBuzz PRIMARY KEY NONCLUSTERED HASH ( Number ) WITH ( BUCKET_COUNT = $(bucketCount) )

) WITH ( MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_ONLY )
GO


CREATE PROC dbo.usp_hekatonFizzBuzz 

    @limit  INT

WITH
    NATIVE_COMPILATION, 
    SCHEMABINDING, 
    EXECUTE AS OWNER
AS
BEGIN ATOMIC
WITH
(
    TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
    LANGUAGE = N'english'
)   

    DECLARE @acc INT = 810092048    -- 11 00 00 01 00 10 01 00 00 01 10 00 01 00 00
    DECLARE @i INT = 1
    DECLARE @c INT

    WHILE @i <= @limit
    BEGIN 

        SELECT
            @c = @acc & 3,
            @acc = ( @acc / 4 ) | ( @c * 268435456 )

        INSERT dbo.FizzBuzz ( Number, Result )
        SELECT @i, SUBSTRING( '       Fizz    Buzz    FizzBuzz', @c * 8, @c * 4 )

        SET @i += 1

    END

END
GO

DELETE dbo.FizzBuzz
DECLARE @startDate DATETIME2 = SYSUTCDATETIME();

EXEC dbo.usp_hekatonFizzBuzz 1000000

SELECT DATEDIFF( millisecond, @startDate, SYSUTCDATETIME() ) diff
GO 10

5

Znalazłem i grałem z tym pojedynczym wyborem sub bez CTE. max_elapsed_time w statystykach zapytań pokazuje 1036

 SELECT num,
        CASE    WHEN mod3 + mod5 = 0 THEN 'FizzBuzz'
                WHEN mod5 = 0 THEN 'Buzz'
                WHEN mod3 = 0 THEN 'Fizz'
                ELSE CONVERT(VARCHAR(8), num)
        END
 FROM 
 (
    SELECT  number as num,
            number % 3 AS mod3,
            number % 5 AS mod5
    FROM    master.dbo.spt_values
    WHERE   name IS NULL
            AND number BETWEEN 1 AND 101
 ) AS numbers;

3

Nie podoba mi się napisany kod, chciałem tylko zobaczyć, jak długo potrwa

JEDEN MILION WIERSZY!

;WITH T(N) AS (SELECT N FROM (VALUES (NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL),(NULL)) AS X(N))
    ,NUMS(N) AS (SELECT TOP(1000000000) ROW_NUMBER() OVER (ORDER BY (SELECT NULL))  AS N FROM T T1,T T2,T T3,T T4,T T5,T T6,T T7,T T8,T T9, T T10)
    SELECT  n, ca.fb
    INTO #fizzywizzy
    FROM    NUMS n
            CROSS APPLY ( SELECT    CASE WHEN n.N % 15 = 0 THEN 'FizzBuzz'
                                         WHEN n.N % 3 = 0 THEN 'Fizz'
                                         WHEN n.N % 5 = 0 THEN 'Buzz'
                                         ELSE CAST(n AS VARCHAR)
                                    END AS [fb]
                        ) ca

Odpowiedź brzmi: około 10 minut.

SQL Server parse and compile time: 
   CPU time = 13 ms, elapsed time = 13 ms.

 SQL Server Execution Times:
   CPU time = 648625 ms,  elapsed time = 618025 ms.

-2

PostgreSQL

PostgreSQL zapewnia generate_seriesfunkcję tabeli-wartości (funkcja zwracająca zestaw), co znacznie ją upraszcza. Zakładam, że nie chcesz, aby cokolwiek się wyświetlało, gdy liczba 3 ani 5 nie wchodzi w to.

SELECT x, str
FROM generate_series(1,49) AS gs(x)
CROSS JOIN LATERAL (VALUES (CASE
  WHEN x % 15 =0 THEN 'Fizzbuzz'
  WHEN x % 3  =0 THEN 'Fizz'
  WHEN x % 5  =0 THEN 'Buzz'
END)) AS c(str)
WHERE str IS NOT NULL;
Korzystając z naszej strony potwierdzasz, że przeczytałeś(-aś) i rozumiesz nasze zasady używania plików cookie i zasady ochrony prywatności.
Licensed under cc by-sa 3.0 with attribution required.